以下是我在多个中小型公司宣讲的 AI 落地方案,分享给大家(转载请注明出处):
我们总听到这样的声音:
不是 AI 取代人,而是会用 AI 的人淘汰不用 AI 的人。
- 高管们都在喊【All in AI】,但实际落地时却分不清哪些是真价值,哪些是伪需求。
- 中层 Leader 更头大:用 AI 做的需求,到底该怎么考核?传统 KPI 体系直接崩坏…
- 而一线同学最真实的困境:明明知道 AI 能改变工作流,但面对技术断层无从下手。
下面的五步指南,分享给所有想知道 AI 如何落地的小伙伴,让 AI 真正为你所用,而非增加负担。
第 1 步:现在就开始使用 AI
大多数人的 AI 打开方式 be like👇:
📚 收藏一堆《万能 prompt 大全》
💻 打开 ChatGPT,输入"帮我提升效率"
😑 得到一堆正确的废话…然后默默关掉网页
🔄 周而复始,直到自己说服自己「AI不过如此」
但真相是:AI 能力不是学出来的,而是用出来的。你不需要想太多,只需要接受它的不完美并经常使用它。——Cafeting
▎第一步就是邀请 AI 加入讨论——对,字面意义上的。
在浏览器标签页中保持 ChatGPT、DeepSeek 等 AI 工具常开或者直接使用它的桌面应用。这样做为了是让 AI 成为仿佛坐在你身边、随时准备提供帮助的队友。就像新队友一样,起初可能会有些笨拙:误解你的语气或犯小错误。但随着时间的推移,你们会逐渐磨合出默契的协作方式。
从你日常已经在做的事情入手:比如写周报、整理任务清单、汇总会议纪要,尝试用 AI 来协助完成:
- 用 DeepSeek 整理凌乱的会议笔记,提取关键点
- 让 ChatGPT 重写模糊的故障报告或客服工单,使其更清晰易懂
- 使用 Cursor 重构重复代码,提升可维护性
▎技巧分享:让 AI 提问来反客为主。
与其直接说“重写这个”,不如换成引导式指令,比如:“请围绕这个项目的目标对我进行采访”。让 AI 通过问答互动来挖掘你的真实需求——这种有来有回的对话能让它更精准地理解你的核心诉求。
不要纠结于寻找“完美”流程,关键在于养成习惯:让 AI 成为你工作流程中的条件反射。——Cafeting
第 2 步:明确你的核心价值所在
在让 AI 放大你的工作成果之前,首先需要清楚哪些部分值得被放大——这正是许多人容易栽跟头的地方。
❌(常见误区)人们总是打开AI工具就问:“你能做什么?”
✅(正确姿势)应该先问自己:“我和团队真正需要的是什么?哪些工作能创造实质价值?”
若不清楚自己的价值定位:你的专长领域、团队依赖你的核心能力,就很容易陷入用 AI 生产"无效内容"的陷阱:生成多余的文字、无意义的汇报或是没人需要的方案。但若能明确自身优势,AI 就会成为真正的增效杠杆。
▎实操:
拿出一张白纸或在电脑记事本中写下这些思考:
- 如果你突然消失一周,团队最需要你处理的哪些工作?
- 同事常向你求助解决哪类问题?
- 哪些对你轻而易举的事,别人却觉得困难?
- 你个人最想达成什么职业突破?
选定一个核心优势后,试着追问:
AI 如何能帮助我把这件事做得更快、更好,或是突破我原有的工作方式吗?——Cafeting
记住:泛泛而谈地使用 AI 只会得到平庸的结果。
要逼自己把专业领域的独到见解转化为具体指令。
第 3 步:培养记录习惯 - 让AI成为你的最佳拍档
如果你问我,最被低估的 AI 效率秘诀是什么?
答案一定是:勤于记录。
不是写给别人看,而是为了让 AI 真正懂你。
▎为什么文档这么重要?
- AI 就像新来的实习生:你如果只说“做个营销方案”,它肯定懵圈;但如果你给它模板、案例和上下文,它就能给你惊喜。
- 清晰的文档 = 为自动化铺路:记录工作流、步骤、验收标准,AI 才能精准执行,而不是“自由发挥”。
▎AI 在清晰中成长。
它需要结构化输入才能发挥最佳性能,而这种结构正来自你提供的背景信息:
▸ 工作流程的拆解步骤
▸ 关键操作的详细记录
▸ 成果达标的明确定义
真正高效的人不一定是技术大神,而是「会下明确指令」的人。——Cafeting
记住:AI 的潜力,取决于你给它的「结构」。
▎行动指南:从今天开始记录:
当你在做重复性工作时(比如写周报/处理bug/策划活动),记录:
1️⃣ 触发条件:什么情况下启动这个任务?
2️⃣ 操作步骤:你具体会做哪些事?(包括那些"理所当然"的细节)
3️⃣ 达标标准:什么样的产出算合格/优秀?
其中,定义"达标标准"正是人类在 AI 时代最核心的价值。"达标"具有强烈的场景特性:
• 好的客户回复是注重同理心还是效率?
• 好的产品功能是追求创新还是稳定?
• 好的战略文档是数据详实还是观点独到?
这些标准没有统一答案,而是基于公司价值观、团队需求和客户期待。AI 能帮你更快达标,但你必须先明确"标"在何处。
▎文档的复利效应:
记录载体不限(Notion/备忘录/笔记本),关键是要形成可复用的上下文,因为这些文档将变成:
✓ 现成的 AI 指令模板
✓ 项目简报原型
✓ 新成员培训手册
✓ 自动化流程基础
▎文档的终极价值:
把偶然的成功 → 变成可复制的流程 → 进化为全自动解决方案
第 4 步:自动化重复内容 - 找到你的 AI 杠杆点
当你发现自己在重复做同一件事时:
▸ 用同样的提示词做头脑风暴
▸ 用固定格式让 AI 总结会议纪要
▸ 用 AI 分析用户反馈的固定流程
恭喜你发现了一个可自动化的工作流!
标准化的工作流经过优化后,就能升级为:
🚀 可复用的智能工具(将优质提示词转化为内部工具)
📤 自动化流程(如:定制每日资讯简报机器人)
🔁 规模化解决方案(优秀提示词=可共享的标准化流程)
▎实操路线图:
-
识别高频场景
• 每周预留 1 小时复盘 AI 使用记录
• 自问:哪些任务重复使用 AI?哪些效果显著?哪些效率提升明显? -
设计自动化原型
• 将成功的提示词转化为模板(例:“请将本次对话转为可复用模板,包含关键指令、输出结构和适配建议”)
• 创建 bot 处理周期性任务
• 设置 Notion 按钮自动生成周报
• 开发定制今日 AI 界发生了啥 -
终极思考框架
“如果 AI 同事已是我们团队的一部分,这个工作流会如何演变?” ——Cafeting
▎专业壁垒才是终极优势:
下一代颠覆性 AI 产品将来自:
► 设计师打造的风格指南生成平台
► 建筑师专属的材料 - 3D 渲染 AI 工作流
► 教师用的苏格拉底讨论实时分析系统
▎你的核心竞争力在于:
✓ 对行业痛点的深度认知(AI 只是新工具)
✓ 将专业经验转化为系统指令的能力
✓ 在"人机协作"中保持决策主导权
——你比任何人都清楚哪些问题值得用 AI 解决——Cafeting
关键提醒:
⚠️ 避免"用后即弃"陷阱:
• 关闭聊天窗前务必保存有效提示词
• 用模板化思维对待成功案例
• 始终对照第二步定义的"价值标准"评估自动化优先级
第 5 步:即时分享经验
此时你已进入 AI 深度应用阶段:
✅ 高频使用 AI 工具
✅ 建立了自动化流程
✅ 养成文档习惯
✅ 甚至开始打造原型
但真正的突破在于——立即开始分享,而非等待"完美时刻"——Cafeting
▎为何现在就要分享?
• 透明即领导力:在全员 AI 学习的组织中,早期经验共享能树立标杆
• 降低试错成本:展示不完美的尝试,实则为团队提供"安全实验"的心理许可
• 激发集体智慧:前线问题解决者与技术支持团队可碰撞出自动化火花
▎轻量化分享策略
① 碎片化输出
• 将惊艳的提示词/失败案例发布到团队的【XX#AI实验频道】
• 用手机录制2分钟屏幕视频演示工作流
② 15分钟团队闪电演示
▸ 演示一个AI工作流
▸ 展示3个失败版本+最终成功版
▸ 重点讲演化过程而非完美结果
例如:“这是我把客户投诉处理时间从 30 分钟压缩到 5 分钟的 AI 方案——虽然表格导出仍要手动”
③ 创建专用文档
在团队文档里建立「AI实战日志」模板,包含:
✓ 原始问题描述
✓ 使用工具截图
✓ 迭代过程记录
✓ 可复用的提示词
▎长期价值沉淀
▸ 可视化证据链:当 AI 使用纳入绩效考核时,有完整证据链
▸ 影响力资产:通过分享建立的跨部门信誉
▸ 创新杠杆:技术团队可能把你的 hack 变成全公司工具
“不要求成品,但要展示迭代过程” ——Cafeting
——最受欢迎的往往是那些血泪史
记住:在AI时代,捂招不如晒招——因为最好的解法永远来自碰撞。
终极心法:把 AI 学习当作工作必修课
请记住这个核心原则:未来的绩效考核不在于"是否使用AI",而在于"用AI创造了什么价值"。
▌突破惯性,即刻行动
AI 入门最难的是跨出第一步。但人类天生擅长驯化工具:
• 我们把弯曲的木材和琴弦变成交响乐
• 将粉碎的岩石炼成通往人类知识宝库的芯片
• 而现在面对的,可能是史上最强大也最易上手的新工具
你不需要:
✖ 成为 AI 代理开发专家
✖ 掌握晦涩的提示词工程
✔ 只需要成为「会借 AI 之力」的职场进化者
▌突破惯性只需三步:
1️⃣ 从微小开始(比如先让 AI 优化你的邮件标题)
2️⃣ 简单可持续的成长循环:尝试→复盘→记录→分享→迭代
3️⃣ 让改变被看见(哪怕只是团队群里发条Mr张#AI战绩)
▌你正在塑造AI的未来
每个实践者都在共同定义 AI 时代的工作方式:
▸ 每次向AI提问,都在塑造下一代 AI 的能力边界
▸ 每个你定义的工作标准,都成为 AI 进化的训练数据
▸ 每个你解决的痛点,都可能催生改变行业的 AI 应用
关键洞见:当你在文档中定义"优秀标准"时,本质上是在为未来 AI 撰写训练手册——今天我们提出的问题,就是明天 AI 内置的功能——Cafeting
最终你会发现:
AI 不会抢走工作
但会用 AI 重新定义工作的人
正在拿走未来的机会
如果有什么建议或者问题可以随时联系我,共同探讨学习: