gcd与扩展gcd

12 篇文章 0 订阅
12 篇文章 0 订阅

gcd用于求最小公约数,lcm求最大共倍数。

ngcd求n个数的最小公约数,nlcm求n个数的最大共倍数

#include <iostream>
using namespace std;
int gcd(int a,int b){ //两个数的最大公约数    
    return b==0?a:gcd(b,a%b);
}
int lcm(int a,int b){//最小公倍数 = 两数乘积 / 最大公约数   
    return a*b/gcd(a,b);
}
int nlcm(int a[],int n){ //N个数的最小公倍数
    return n==1?a[0]:(lcm(a[n-1],nlcm(a,n-1)));
}
int ngcd(int a[],int n){//N个数的最大公约数
    return n==1?a[0]:(gcd(a[n-1],ngcd(a,n-1)));
}
int main(){
    int a,b,n,rgcd,rlcm,rngcd,rnlcm;   
    int pa[10],i;   
    cout<<"please input tow number:"<<endl;   
    cin>>a>>b;
    rgcd=gcd(a,b);   
    rlcm=lcm(a,b);   
    cout<<"最大公约数是:\n"<<rgcd<<endl;   
    cout<<"最小公倍数是:\n"<<rlcm<<endl;   
    cout<<"please input the n:"<<endl;   
    cin>>n;   
    for (i=0;i<n;i++)   
        cin>>pa[i];   
    rngcd=ngcd(pa,n);   
    rnlcm=nlcm(pa,n);   
    cout<<"最大公约数是:\n"<<rngcd<<endl;   
    cout<<"最小公倍数是:\n"<<rnlcm<<endl;   
    return 0;   
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值