算法
洋石灰
KG,ML,DL,NLP —— neo4j ——python ,C++
展开
-
奇异值分解(SVD)原理详解及推导(转载)
在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来。本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下。 SVD不仅是一个数学问题,在工程应用中...转载 2018-05-09 16:12:26 · 404 阅读 · 0 评论 -
正则化L1,L2规则
正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的...转载 2018-05-26 11:23:41 · 420 阅读 · 0 评论 -
tf.nn.conv2d——卷积神经网络
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)除去name参数用以指定该操作的name,与方法有关的一共五个参数:第一个参数input:...转载 2018-05-26 20:34:51 · 769 阅读 · 0 评论 -
[机器学习]-神经网络—激活函数
神经网络之激活函数(Activation Function)日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid、ReLU等等。不过好像忘了问自己一(n)件事:为什么需要激活函数?激活函数都有哪些?都长什么样?有哪些优缺点?怎么选用激活函数?本文正是基于这些问题展开的,欢迎批评指正!(此图并没有什么卵用,纯属为了装x …)Why use activation functio...转载 2018-05-24 21:45:15 · 505 阅读 · 1 评论