算法与数据结构进阶课第二节笔记

博客探讨了如何使用矩阵快速幂优化递归算法,以解决斐波那契数列问题。通过建立矩阵并进行矩阵乘法,将时间复杂度降低到O(logN)。这种方法适用于形如F(N)=C1*F(N)+...+Ck*F(N-k)的递归问题,包括农场母牛数量、走楼梯问题等。博客还给出了多个实例,展示如何应用该优化策略解决不同场景下的递归问题。
摘要由CSDN通过智能技术生成

类似斐波那契数的递归

|f(n),f(n-1)| = |f(n-1),f(n-2)|*\begin{pmatrix}a & b\\ c& d \end{pmatrix}

斐波那契数的快速幂

f(n-1) * a + f(n-2) * c = f(n)

f(n-1) * b + f(n-2) * d = f(n-1)    可以计算出a,b,c,d

因为f(n) = f(n-1) + f(n-2) 必然会有上面的公式

|f(n),f(n-1)| = |f(n-1),f(n-2)|*\begin{pmatrix}a & b\\ c& d \end{pmatrix}

|f(n-1),f(n-2)| = |f(n-2),f(n-3)|*\begin{pmatrix}a & b\\ c& d \end{pmatrix}

替换进去就能得出

|f(n),f(n-1)| = |f(n-2),f(n-3)|*\begin{pmatrix}a & b\\ c& d \end{pmatrix}^{2}

继续推导得出

|f(n),f(n-1)| = |f(2),f(1)|*\begin{pmatrix}a & b\\ c& d \end{pmatrix}^{n-2}

      public static int f3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		// [ 1 ,1 ]
		// [ 1, 0 ]
		int[][] base = { { 1, 1 }, { 1, 0 } };
		int[][] res = matrixPower(base, n - 2);
		return res[0][0] + res[1][0];
	}

	public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		// res = 矩阵中的1
		int[][] tmp = m;// 矩阵1次方
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = muliMatrix(res, tmp);
			}
			tmp = muliMatrix(tmp, tmp);
		}
		return res;
	}

	public static int[][] muliMatrix(int[][] m1, int[][] m2) {
		int[][] res = new int[m1.length][m2[0].length];
		for (int i = 0; i < m1.length; i++) {
			for (int j = 0; j < m2[0].length; j++) {
				for (int k = 0; k < m2.length; k++) {
					res[i][j] += m1[i][k] * m2[k][j];
				}
			}
		}
		return res;
	}

矩阵的乘法

    //对A与B相乘的结果用C表示,a[m][n] * b[n][p] = c[m][p]
    private static void juzhenchen(int[][] a, int[][] b, int[][] c, int m, int p, int n) {
        for(int i=0;i<m;i++){
            for(int j=0;j<p;j++){
                c[i][j]=add(a[i],b,j,n);
            }
        }
    }
    //利用累加,得到c[i][j]的值
    private static int add(int[] a, int[][] b, int j, int n) {
        int sum=0;
        for(int k=0;k<n;k++)
        {
            sum+=a[k]*b[k][j];
        }
        return sum;
    }

如果某个递归,除了初始项之外,具有如下的形式

F(N) = C1 * F(N) + C2 * F(N-1) + … + Ck * F(N-k) ( C1…Ck 和k都是常数)

并且这个递归的表达式是严格的、不随条件转移的

那么都存在类似斐波那契数列的优化,时间复杂度都能优化成O(logN)

例1:一个农场有1头母牛每年可以生一头母牛,生的小牛也是母牛,第四年及以后,每次生一头母牛,那N年后有多少牛

今年的牛=去年的牛+生下的牛(排除掉三年前生的牛,此时还不能生)

f(n) = f(n-1) + f(n-3)

f(n) = 1*f(n-1) + 0 * f(n-2) + 1*f(n-3) 也就是需要一个3阶矩阵,如果是k就是k阶矩阵

      public static int c3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2 || n == 3) {
			return n;
		}
		int[][] base = { { 1, 1, 0 }, { 0, 0, 1 }, { 1, 0, 0 } };
		int[][] res = matrixPower(base, n - 3);
		return 3 * res[0][0] + 2 * res[1][0] + res[2][0];
	}

例2:走楼梯,可以走一步,也可以走两步,到N台阶有几种方法

走到n-1的方法数加上走到n-2的方法数

f(n) = f(n-1) + f(n-2)

和斐波那契数不一样的是初始项不一样

例3:走楼梯,可以走一步,也可以走两步,五步,到N台阶有几种方法

f(n) = f(n-1) + f(n-2) + f(n-5)

例4:母牛十年后会死

f(n) = f(n-1) + f(n-3) - f(n-10)

例5:给定一个数N,想象只由0和1两种字符,组成的所有长度为N的字符串,,如果某个字符串,任何0字符的左边都有1紧挨着,认为这个字符串达标,返回有多少达标的字符串

f(i)  i 左边 必有一个1,长度为i的达标字符串

f(i) = f(i-1) + f(i-2)

例6:一个2*N的区域,只给1*2的瓷砖,填满区域有多少种方法?

f(N) 定义 剩下N列没有填满,返回方法数

竖着填 剩下 f(n-1),横着填,只能是f(n-2),所以是

f(n) = f(n-1) + f(n-2)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值