一种通过鲸鱼优化算法 WOA(也可做其他优化算法)对核极限学习机(KELM)的核参数及正则化项等参数进行优化,建立WOA-KELM回归预测模型,多输入单输出模型,时间窗法,代码注释清晰,替换数据简单,只需替换自己的excel或者csv数据路径即可。
(python代码)
ID:99105699330051322
A代码猿
鲸鱼优化算法(Whale Optimization Algorithm,WOA)是一种模拟鲸鱼群体行为的优化算法,其灵感来源于鲸鱼觅食的行为。该算法通过模拟鲸鱼个体的追踪和捕食行为,对核极限学习机(Kernel Extreme Learning Machine,KELM)的核参数和正则化项等参数进行优化,从而建立WOA-KELM回归预测模型。
KELM是一种基于极限学习机(Extreme Learning Machine,ELM)的机器学习算法,其通过随机生成神经元的输入权重以及随机选择隐藏层神经元的激活函数来提高学习效率和预测准确性。然而,KELM的性能很大程度上依赖于核参数的选择和正则化项的设置。因此,通过WOA优化算法对KELM的核参数和正则化项等参数进行优化,可以进一步提高KELM模型的性能和预测准确性。
在构建WOA-KELM回归预测模型时,我们采用了多输入单输出模型,即模型的输入为多个特征,而输出为单个目标变量。这种模型适用于许多实际应用中需要对多个变量进行预测的场景。此外,为了更好地利用时间序列数据的特点,我们采用了时间窗法,即将时间序列数据切分为多个窗口,每个窗口作为模型的一个输入样本,从而充分利用时间序列数据的相关性。在代码实现方面,我们采用了Python语言,并且代码注释清晰,替换数据也十分简单,只需替换自己的Excel或CSV数据路径即可。
WOA-KELM回归预测模型具有以下优势。首先,通过优化算法对KELM的核参数和正则化项等参数进行优化,可以提高模型的自适应能力和泛化能力,从而提高预测准确性。其次,采用多输入单输出模型可以灵活应对多个变量的预测需求,适用于许多实际应用场景。最后,时间窗法的引入充分利用了时间序列数据的相关性,提高了模型对序列数据的建模能力。
总之,通过使用WOA优化算法对KELM的核参数和正则化项等参数进行优化,我们建立了WOA-KELM回归预测模型,该模型采用多输入单输出模型和时间窗法,具备较高的预测准确性和泛化能力。同时,代码实现简单易懂,替换数据方便快捷,适用于不同的数据集和应用场景。因此,WOA-KELM回归预测模型在实际应用中有着广泛的应用前景。
(以上文章仅为模拟文章,不代表真实情况)
【相关代码,程序地址】:http://fansik.cn/699330051322.html