机器学习方法和技术
文章平均质量分 64
机器学习方法和技术
天边一坨浮云
这个作者很懒,什么都没留下…
展开
-
记录踩过的坑-sklearn
记录踩过的坑-sklearn原创 2023-04-16 10:43:57 · 1327 阅读 · 0 评论 -
K折交叉验证
第一步,不重复抽样将原始数据随机分为 k 份。第二步,每一次挑选其中 1 份作为测试集,剩余 k-1 份作为训练集用于模型训练。第三步,重复第二步 k 次,这样每个子集都有一次机会作为测试集,其余机会作为训练集。 在每个训练集上训练后得到一个模型, 用这个模型在相应的测试集上测试,计算并保存模型的评估指标,第四步,计算 k 组测试结果的平均值作为模型精度的估计,并作为当前 k 折交叉验证下模型的性能指标。也可以专门留出测试集(不参与K折),而K折过程用于模型调优sciki...原创 2021-08-15 09:20:25 · 783 阅读 · 0 评论 -
机器学习中的random_state参数
作用:控制随机状态。原因:为什么需要用到这样一个参数random_state(随机状态)?在此先简单罗列三种情况:1、在构建模型时:forest = RandomForestClassifier(n_estimators=100, random_state=0)forest.fit(X_train, y_train)2、在生成数据集时:X, y = make_moons(n_samples=100, noise=0.25, random_state=3)3、在拆分数据集为训练集、测试原创 2021-01-30 16:15:12 · 20791 阅读 · 3 评论 -
各种算法-强化学习
目录概念强化学习中的策略(policy):Q-learning(Quality-learning)强化学习中的State和Observation强化学习agent分类概念奖励(reward)、代理(agent,又叫智能体)、环境(environment)、状态(state)、动作(action)强化学习中的策略(policy):目标策略(target policy):智能体要学习的策略行为策略(behavior policy):智能体与环境交互的策略,即用于生成行为的原创 2021-01-28 13:21:31 · 690 阅读 · 0 评论 -
神经网络相关的概念和术语
目录模型训练指标损失激活函数优化器正则化层其他模型训练编译:compile拟合:fit过拟合:overfit欠拟合:underfit随机初始化:radom initialization前向传播:foward pass小批量随机梯度下降:mini-batch stochastic gradient descent,SGD训练后的量化(post training quantizated)训练中引入量化(quantization aware原创 2020-11-29 10:29:23 · 891 阅读 · 0 评论 -
机器学习中的数据及其处理
目录数据及其处理文本数据词干提取(stemming)和词形还原(lemmatization)N-gram模型音频数据确定数据集规模数据及其处理样本:sample,或输入,input预测:prediction,或输出,output目标:target,真实值类别:class标签:label真值:ground-truth,或标注,annotation训练集:training set测试集:test set数据蒸馏:data distillation原创 2020-11-28 10:15:44 · 2812 阅读 · 0 评论 -
深度学习中数据与神经网络架构之间的关系
向量数据:密集连接网络图像数据:二维卷积神经网络声音数据:一维卷积神经网络(首选)或循环神经网络文本数据:一维卷积神经网络(首选)或循环神经网络时间序列数据:循环神经网络(首选)或一维卷积神经网络其他类型的序列数据:循环神经网络或一维卷积神经网络。如果数据顺序非常重要(如时间序列,但文本不是),那么首选循环神经网络视频数据:三维卷积神经网络(如果需要捕捉运动效果),或者帧级的二维神经网络(用于特征提取)+循环神经网络或一维卷积神经网络(用于处理得到的序列)立体数据:三维卷积神经网原创 2020-10-19 07:57:33 · 691 阅读 · 0 评论 -
机器学习中的通用工作流程
定义问题想预测什么?有哪些数据可用?是否需要收集更多的数据?是否需要人工标注?定义评价指标寻找能够可靠评估目标成功的方法。为任务设计不同的评价指标,如针对简单任务,可以用预测精度。准备数据集准备用于评估模型的验证过程,即定义训练集、验证集、测试集。验证集和测试集的标签不应泄露到训练数据中。如针对时序预测,验证数据和测试数据的时间都应在训练数据之后。数据向量化将数据转化为向量并预处理(如标准化),使其更容易被神经网络所处理。开发模型...原创 2020-10-19 07:50:39 · 145 阅读 · 0 评论