2021.6.8

MySQL链接查询

  • 连接是关系数据库模型的主要特点。连接查询是关系数据库中最主要的查询,主要包括内连接、外连接等。通过连接运算可以实现多个表查询。当查询数据时,通过连接操作查询出存放在多个表中的不同实体信息。当两个或多个表中存在相同意义的字段时,便可以通过这些字段对不同的表进行连接查询。如下将介绍多表之间的内连接查询、外连接查询以及复合条件连接查询。

内连接查询

 内连接(inner join)使用比较运算符进行表间列数据的比较操作,并列出这些表中与连接条件相匹配的数据行,并组合成新的记录。

内连接是应用程序中非常常见的连接操作,它一般是默认的连接类型。内连接基于连接谓词,它将两张表的列组合在一起,产生新的结果表。内连接查询会将A表的每一行和B表的每一列进行比较,并找出满足连接谓词的组合。当连接谓词被满足,A和B中匹配的行会按列组合成结果集中供电一行。

内连接查询操作列出与连接条件匹配的数据行,它使用比价运算符比较被连接列的列值。

内连接分三种:交叉连接,相等连接和自然连接。

车辆表vehicle与线路表Line存在一个连接依据列------lineID。连接以上两张表,使用内连接并使用“*”作为字段列表,SQL语句如下:

select * from line join vehicle on line.lineID=vehicle.lineID

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,需要将数据转换成pandas的DataFrame格式,代码如下: ```python import pandas as pd data = {'日期/项目(A厂)': ['2021.1.1', '2021.1.2', '2021.1.3', '2021.1.4', '2021.1.5', '2021.1.6', '2021.1.7', '2021.1.8', '2021.1.9', '2021.1.10', '2021.1.11', '2021.1.12', '2021.1.13', '2021.1.14', '2021.1.15', '2021.1.16', '2021.1.17', '2021.1.18', '2021.1.19', '2021.1.20', '2021.1.21', '2021.1.22', '2021.1.23', '2021.1.24', '2021.1.25', '2021.1.26', '2021.1.27', '2021.1.28', '2021.1.29', '2021.1.30', '2021.1.31'], '进水': [149, 164, 86, 164, 146, 136, 93, 96, 90, 134, 141, None, None, None, 138, 138, 161, None, None, None, None, None, None, None, None, None, 114, 107, 121, None, None], 'COD': [20.1, 10.1, 37.1, 16.4, 10.9, 18.7, 17.2, 17.1, 18.5, 23.8, 17.7, 15.6, 11.0, 19.5, 18.5, 15.2, 16.5, 16.3, 17.3, 29.5, 20.7, 19.5, 18.9, 12.0, 23.9, 11.7, 10.6, 11.1, 14.2, 10.6, 12.5], '氨氮': [3.54, 0.65, 1.92, 1.44, 0.84, 1.59, 1.15, 1.61, 1.42, 2.46, 2.50, 1.48, 1.04, 3.55, 1.60, 1.82, 2.60, 2.10, 1.54, 3.54, 2.67, 3.25, 2.12, 2.38, 2.34, 1.51, 1.58, 1.31, 1.66, 1.26, 1.71], '总磷': [30.7, 20.1, 44.1, 21.5, 18.4, 29.7, 23.5, 24.2, 26.9, 31.7, 28.3, None, None, 24.0, 26.9, 27.8, 20.5, 27.9, 31.8, 37.8, 24.9, 29.3, None, 23.4, 23.5, 12.4, 27.9, 19.3, 17.6, 19.5, 15.4]} df = pd.DataFrame(data) ``` 接下来,我们可以使用matplotlib库进行数据可视化,这里我选择绘制折线图。代码如下: ```python import matplotlib.pyplot as plt # 设置图形大小 plt.figure(figsize=(10, 6)) # 绘制折线图 plt.plot(df['日期/项目(A厂)'], df['进水'], label='进水') plt.plot(df['日期/项目(A厂)'], df['COD'], label='COD') plt.plot(df['日期/项目(A厂)'], df['氨氮'], label='氨氮') plt.plot(df['日期/项目(A厂)'], df['总磷'], label='总磷') # 添加标题和标签 plt.title('A厂水质监测', fontsize=16) plt.xlabel('日期', fontsize=12) plt.ylabel('含量', fontsize=12) # 添加图例 plt.legend() # 显示图形 plt.show() ``` 运行上述代码,即可得到一张含有4条曲线的折线图,用于展示A厂水质监测数据的趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值