- 博客(1405)
- 收藏
- 关注
原创 在个人电脑上运行Llama 3 70B大规模模型指南
随着人工智能和机器学习技术的迅猛发展,像Llama 3 70B这样的庞大语言模型已经成为了研究、开发和应用中的重要工具。这篇文章将详细介绍如何在个人电脑上运行Llama 3 70B大模型,并涵盖硬件要求、软件环境配置、安装步骤、运行示例和常见问题的解决方案。虽然运行这样一个大规模的模型在性能上有限制,但对于实验和学习非常有帮助。
2024-06-15 10:35:11
8330
原创 2024!国内AI大模型平台哪家强?全方面测评来了
这篇仅是开坑哈,后面会持续更新的~主旨就是想要在滚滚浪潮中帮助AI开发者发现、汇聚到简单、好用的AI大模型平台&开发者社区上来,共建国内繁荣AIGC生态!!有些规模太小、不好用、吃相太难看(没几个模型就要走付费变现路子的)的平台我就先不放上来啦。
2024-06-05 17:14:02
8519
原创 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型
通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步积累经验,最终能够处理大模型和复杂任务。分享您的研究成果和代码,以获得反馈和建立声誉。
2024-04-17 11:56:47
8196
原创 AI 入门,从零搭建完整 AI 开发环境,并写出第一个 AI 应用
在本文中,我们从零开始,一步步搭建了一个完整的AI开发环境,并创建了一个简单的AI应用。您学习了如何安装Python、Anaconda、TensorFlow,以及如何使用Jupyter Notebook进行开发。通过这个简单的手写数字识别应用,您不仅学习了AI的基本概念,还亲身体验了AI的应用。AI是一个广阔而充满机遇的领域,希望这个教程能够激发您继续深入学习和探索AI的兴趣。
2024-04-10 11:02:43
12318
1
原创 国内超大型智能算力中心建设白皮书 2024
智算中心建设通过领先的体系架构设计,以算力基建化为主体、以算法基建化为引领、以服务智件化为依托,以设施绿色化为支撑,从基建、硬件、软件、算法、服务等全环节开展关键技术落地与应用。一、体系架构(一)总体架构图8 智算中心总体架构智能算力中心建设白皮书,重点围绕基础、支撑、功能和目标四大部分,创新性地提出了智算中心总体架构。其中,基础部分是支撑智算中心建设与应用的先进人工智能理论和计算架构;支撑部分围绕智算中心算力生产、聚合、调度、释放的作业逻辑展开;功能部分提供算力生产供应、数据开放共享、智能生态建设和产业创
2024-04-08 15:07:31
12671
1
原创 【必藏】大模型入行晚了?现在就是黄金时机!小白到入门的完整路线
别追求“一步到位”:不用等“学完Python再学LangChain”,可以边做项目边补知识——比如做项目时遇到Python字典不会用,再回头查教程,效率更高。每天花1-2小时实操,比存100篇“大模型学习路线”有用。多混技术社区:加入CSDN的大模型交流群、Hugging Face中文社区、LangChain的Discord频道——遇到问题问同行,比自己瞎琢磨快10倍,还能及时获取行业动态。接受“不完美”
2025-12-16 15:08:57
581
原创 收藏必备:RAG检索增强生成技术详解,从初级到高级彻底解决LLM幻觉问题
文章详细介绍了检索增强生成(RAG)技术,包括初级RAG(简单检索与LLM结合)和高级RAG(增加检索前后优化步骤)。初级RAG实施简单无需微调,适合简单用例;高级RAG通过查询重写、动态嵌入、混合检索、重新排序和上下文压缩等技术提升性能,适用于复杂应用和大规模数据集。技术对比显示高级RAG在准确性、检索质量和查询优化方面显著优于初级RAG。
2025-12-16 15:03:37
309
原创 【收藏必备】让AI智能体越用越聪明!揭秘MemMachine开源记忆层架构与实战指南
MemMachine 是为AI智能体打造的通用记忆层。它让AI应用能够学习、记忆并在不同会话间延续上下文,从而构建持续进化的用户档案。简单来说,它将普通的聊天机器人,升级为能真正理解你、与你共同成长的个性化助手。它有什么特性?多种内存类型:MemMachine 支持工作(短期)、持久(长期)和个性化(档案)内存类型。开发者友好型 API:Python SDK、RESTful 和 MCP 接口及端点,集成起来非常简单。
2025-12-15 21:02:56
482
原创 深入智能体开发:原理、架构、框架对比与最佳实践,技术必读收藏指南
本文系统梳理智能体(Agent)技术体系,从基础概念到架构实现。首先解析PEAS模型、智能体循环等核心原理,对比智能体与传统工作流的本质区别;重点介绍ReAct、Plan-and-Solve、Reflection等主流架构的设计思路与实现方法;深入探讨模型参数调优策略,包括温度、Top-k/p等参数的协同机制;最后对比分析AutoGen等主流框架的特点与适用场景,为开发者提供构建高性能智能体系统的完整技术指南。
2025-12-15 21:02:06
553
原创 AI核心能力揭秘:泛化能力是理解AI的关键,收藏这篇文章,让你彻底明白AI的本质与局限
AI的核心特征是泛化能力,即基于已有知识生成新内容的能力。AI具有"临近泛化"优势,能在已知领域高效创作,但缺乏人类"远程泛化"的创新能力。目前AI对职业替代率约11.7%,未来将向更强泛化架构和专业化方向发展。掌握大模型技术将成为把握AI时代就业机会的关键,相关学习资源包括成长路线、专业书籍、视频教程和实战项目等。
2025-12-15 21:00:56
590
原创 RAG面试通关秘籍:28个高频问题深度解析,建议收藏!
本文系统梳理了RAG技术的28个高频面试问题,全面覆盖基础认知、常见问题、高级机制、RAG-Fusion、优化策略及未来展望六大模块。内容从RAG原理、与SFT的区别等基础知识,到内容缺失、格式错误等实际问题的解决方案,再到多通道检索、缓存优化等进阶技巧,最后探讨了多模态融合、Agent自主检索等前沿方向。文章不仅剖析了RAG的核心技术要点,还针对性地提供了优化思路和工程实践建议,为AI从业者构建了完整的RAG知识框架,是准备相关岗位面试的实用指南。
2025-12-15 21:00:08
301
原创 收藏!前端未死,AI才是破局密钥|大模型时代前端升级指南
前端岗位的需求从未真正消退,但那些“只拼体力不拼技术”的粗放型岗位,确实在技术迭代中逐年收缩。这并非前端独有的困境——在大模型浪潮席卷的今天,从后端架构到测试运维,几乎所有技术赛道的从业者,都曾被“技能快速折旧”的焦虑包裹。是安于CV(复制粘贴)搬砖的舒适区,还是主动拥抱新趋势完成职业跃迁?答案,早已藏在技术演进的浪潮里。
2025-12-15 15:33:52
381
原创 【干货收藏】智能体详解:从ChatGPT到自主AI的跃迁,程序员必看指南
文章解析了智能体(Agent)概念,不同于大语言模型的"说",智能体能自主"做"。包含大脑(LLM+规划)、感知记忆和行动工具三部分,分为通用智能体、工作流智能体和Prompt智能体。不必纠结定义,而应关注使用场景,未来竞争在于谁能部署更多、更专业的智能体。智能体不是未来,而是正在发生的现实,关键在于开始应用而非理解。
2025-12-15 15:31:04
817
原创 【干货收藏】AI模型训练详解:从零开始掌握大模型开发
AI 模型训练是一个复杂但充满机遇的过程。通过了解其原理、方法和挑战,我们可以更好地利用这项技术来推动社会的发展和进步。无论你是企业决策者,还是技术开发者,都应该关注 AI 模型训练的最新动态,积极探索其在各自领域的应用。最后,如果你对 AI 模型训练感兴趣,或者想要在这一领域取得更大的突破,不妨与专业的团队合作。例如,SoluLab 的 InfuseNet 项目,通过结合照片、文档、文本和 API 等数据,重新定义了数据赋能的概念。
2025-12-15 15:29:11
646
原创 收藏必备!Memento框架:让大模型智能体在实践中成长,而非重复训练
Memento是一种创新的大模型智能体框架,通过记忆与经验累积而非梯度更新实现智能体成长。它采用Planner-Executor循环和案例记忆库架构,使智能体能够从自身经历中学习,在部署中持续进化。该框架支持丰富的工具生态,在多项基准测试中表现优异,为研究助理、政策分析等场景提供了可落地方案。开发者可通过简单配置实现"用中学习"的智能体,无需重新训练模型即可实现能力提升。
2025-12-12 19:01:31
637
原创 收藏必备!2025企业级AI开发指南:Serverless架构实现降本增效50%全解析
本报告聚焦2025企业级AI应用开发全流程,详解从技术选型到生产落地的关键路径。企业级AI开发正转向AI原生架构,以Serverless为最优运行时,通过毫秒级冷启动、GPU切分等技术解决高并发、高成本痛点。阿里云FC、SAE等产品已形成成熟解决方案,在吉利汽车等案例中实现算力成本优化33%以上、开发效率提升50%。未来AI开发将朝着简单易用、安全高效、弹性低成本方向演进。
2025-12-12 18:59:26
628
原创 RAG文档处理全攻略:手动vs自动化,收藏这份决策指南!
RAG系统中文档处理方式的选择直接影响检索质量。手动处理准确率高(99%+),能理解语义和特殊格式,但效率低;自动化工具处理速度快、成本低,但对复杂格式识别有限。企业通常开发混合工具结合两者优势:小企业适合手动处理少量文档,大企业需要自动化处理海量数据,高质量场景仍需人工介入。文档处理质量是RAG系统的核心,需根据业务规模、质量要求和开发能力灵活选择策略。(149字)
2025-12-12 18:58:10
849
原创 【深度收藏】模型蒸馏vs微调:技术详解+代码实战,两种技术的区别与组合使用指南
模型蒸馏与微调技术对比及组合应用 摘要: 本文系统分析了模型蒸馏与微调的核心差异:蒸馏通过软标签迁移知识,微调基于硬标签调整参数。提供了三种实现方案:1)纯微调直接优化目标任务;2)纯蒸馏实现知识迁移;3)组合方法先蒸馏后微调。最佳实践表明,组合策略通过动态调整损失权重(如alpha_schedule从0.7降至0.3)能获得最优效果,既保留大模型知识又适配目标任务。实验显示组合方法在GLUE任务上比单一技术提升3-5%准确率,验证了"先迁移后优化"的技术路线优势。关键点包括教师模型预微
2025-12-12 18:57:18
656
原创 大模型在数据领域的四大应用思路,收藏学习必备
本文简要介绍了大模型LLM在数据领域应用的思路,具体方案会在后续专题中逐步展开。大模型的快速发展为企业数据体系带来了新机遇,企业思考在数据治理、数据安全、数据整合、数据分析与挖掘以及业务应用等方面,通过大模型应用来提高生产力。随着OpenAI开发者大会召开,ChatGPT使用成本也逐步降低,并且国产大模型百花齐放,模型效果逐渐提高,将助力大模型应用在各行各业中大放异彩。
2025-12-12 14:15:00
1379
原创 收藏!吴恩达力荐:AI时代最香岗位,生成式AI工程师通关指南
前排高能提醒!文末附CSDN独家大模型学习资料包,涵盖Prompt工程实战、RAG开发手册,小白也能直接上手,看到最后别错过~“现在学AI还来得及吗?”“做什么岗位能踩稳AI风口?在CSDN的技术社群里,这类问题每天都被反复提及。而AI领域的权威学者吴恩达最近的一次分享,给所有迷茫的开发者指了条明路——,正是当前AI时代最“吃香”的核心人才。无论是刚入门的编程小白,还是想转型AI的传统开发者,这个岗位都堪称“低门槛高潜力”的最优解。
2025-12-12 13:15:00
1356
原创 【收藏版】不懂 RAG?一篇万字长文带你吃透大模型检索增强生成技术!
对于刚入门大模型的小白和想要拓展技术栈的程序员来说,RAG(检索增强生成)是绕不开的核心技术。它不仅能解决传统大模型的 “知识滞后”“易幻觉” 等痛点,还能大幅提升模型在专业领域的实用性。这篇文章将从技术原理到实战流程,再到高级玩法,全方位拆解 RAG,帮你从零到一掌握这项技术。传统的语言模型,比如 GPT-3,虽然在生成文本方面表现出色,但它们有一个显著的局限性:它们依赖于预训练的参数,无法动态访问外部知识。这意味着这些模型在处理实时信息、领域特定知识或罕见实体时表现不佳。
2025-12-12 09:15:00
780
原创 35岁程序员必看!智能体开发:你的职场第二曲线,建议收藏
摘要:35岁IT从业者面临职场危机,AI和年轻一代的竞争削弱了传统经验优势。智能体(Agent)技术成为解决方案,其开发门槛低,有经验的程序员可快速掌握。当前市场极度缺乏智能体开发人才,为中年IT人提供了职业转型机遇。这项技术让经验重新获得价值,成为"技术转身点",帮助35+程序员将危机转化为升职加薪机会,实现职业第二春。(148字)
2025-12-11 18:52:31
622
原创 【必收藏】10分钟彻底搞懂ChatGPT!AI大模型底层原理解析,从接龙游戏到Transformer架构
本文揭秘AI大模型工作原理:本质是预测下一个Token的"接龙游戏",经历预训练(海量阅读)、微调(专业训练)和推理(实战应用)三阶段。通过概率预测生成文本,向量嵌入技术实现语义理解,Transformer架构赋予上下文理解能力。AI实为超级概率计算器,理解其原理有助于更好驾驭这一工具,看清能力边界与潜在问题。
2025-12-11 18:50:41
512
原创 收藏备用!技术人转型困境:大模型风口VS舒适圈,如何找到适合自己的路?
职业转型中的风口选择与舒适圈困境是当下普遍现象。文章指出,犹豫并非弱点而是慎重思考的表现,建议从能力杠杆、不可替代性和公司路径三个维度评估赛道价值。舒适圈可作为探索新方向的安全网,小规模试错比盲目投入更明智。关键在于找到既能发挥自身优势又能创造价值的方向,而非单纯追逐热点。文章强调,真正的职业成功在于绘制属于自己的成长路径,而非随波逐流。
2025-12-11 18:49:53
783
原创 【收藏必备】2023年大模型转型完全指南:从零入门到就业的全方位攻略
《大模型领域转型全攻略》摘要:本文系统梳理了大模型领域从入门到就业的学习路径。首先建议明确职业方向(开发/应用/研究/工程),然后掌握Python编程、深度学习框架和数学基础等必备知识。重点学习Transformer架构、预训练微调技术及大模型优化方法,推荐实践文本分类、机器翻译等项目。鼓励参与Hugging Face等开源社区,持续关注行业动态。全文涵盖技术学习、项目实践和职业发展建议,为转型者提供全方位指导。(150字)
2025-12-11 18:48:24
834
原创 收藏!大模型应用开发入门指南:从API调用到实战项目,小白也能快速上手
大模型应用开发就像2013年的移动开发、2018年的小程序开发——门槛不高,但机遇巨大。注册一个大模型平台账号(推荐百度文心千帆,国内用户友好);跟着CSDN的API调用教程,获取密钥并写出第一行调用代码;完成第一个小项目(比如代码注释生成器),并分享到CSDN博客。当你看到AI根据你的代码输出结果时,就已经迈出了入局AI的第一步。最后,欢迎在评论区分享你的学习进度,遇到问题随时提问,一起在大模型赛道成长!
2025-12-11 14:57:36
728
原创 【必读收藏】为什么说向量数据库是RAG的唯一解?大模型开发者必知的技术核心
向量数据库(Vector Database, VDB)不是传统数据库的简单升级,而是为解决高维语义相似度搜索这一特定问题而特化(Specialized)设计的、拥有独特索引和计算模型的新型数据基础设施。与基于“精确匹配”和“事务一致性”的传统数据库相对比,VDB 的核心目标则是近似相似度搜索,围绕解决“维度灾难”这一瓶颈而设计的。从架构设计角度来讲,向量数据库是一类专门存储和检索 高维向量表示(embedding) 的系统。
2025-12-11 14:50:14
583
原创 收藏必备:大模型量化技术全解析:让你的LLM在资源受限设备上高效运行不降智
LLM的所有运算都离不开数字——每个权重参数、每次激活值、每一个注意力分数,全都建立在浮点数运算之上。这些数值流畅、连续、无限精确。但计算机呢?它们更喜欢固定、离散的存储单元(比如整数而不是高精度浮点数)。要么你的数据能塞进去,要么就塞不进去。就像你试图把整个衣柜塞进一个登机箱一样,装得下就装,装不下就没办法。这时候,量化技术站出来说:“嘿,大语言模型,如果每个数字不再使用 32 位精度,而是砍到 8 位,甚至 4 位呢?你几乎察觉不到差别,但我们能省下大量内存。
2025-12-11 14:48:39
593
原创 【建议收藏】大模型幻觉的成因与五大解决方案全解析
AI大模型"幻觉"问题解析与解决方案 本文系统剖析了AI大模型产生"幻觉"(生成虚假但合理信息)的技术本质,指出这是概率模型的固有特性。文章分类了四种幻觉类型(事实型、逻辑型、指令型、语义型),并从训练数据、理解能力等维度分析成因。提出五大解决方案:RAG(检索增强生成)、模型微调、提示词工程、多模型验证及外部规则系统,强调需根据场景组合使用。为AI产品经理提供从场景定义到评估体系的完整落地框架,指出幻觉虽无法根除但可通过系统化管理实现可控可预测。文末附大模型学习资源
2025-12-10 19:05:55
789
原创 【收藏必备】RAG技术深度解析:语义理解与语义检索的区别及应用场景全攻略
本文解析了RAG系统中语义理解与语义检索的差异:语义理解是模型的基础能力,用于准确解析用户意图;语义检索则是基于向量计算的文档匹配技术。在传统RAG中,语义检索通过向量数据库实现核心检索功能;而在智能体RAG中,语义理解则成为生成工具参数的关键。二者协同作用,共同提升问答系统的智能化水平。(149字)
2025-12-10 19:05:00
710
原创 【必收藏】AI Agent上下文工程实战:三种优化技术让你的智能体更高效、更省钱
文章介绍了CAMEL团队提出的AI Agent上下工程三大技术:上下文摘要保留关键信息丢弃冗余;工作流记忆记录任务解决经验供未来参考;工具输出缓存将详细结果存储于上下文外仅留ID引用。这些技术能有效减少token消耗、降低认知负担,提升智能体性能与效率,无需更改LLM或增加计算资源。
2025-12-10 19:04:13
607
原创 【干货收藏】Agent 2.0架构深度解析:从浅层循环到深度代理的演进
AI大模型技术正催生新职业机遇,如Prompt工程师、大模型算法工程师等。《2025最新大模型全套学习资源》提供从入门到精通的系统学习方案,包含成长路线图、经典书籍、视频教程、项目实战、行业报告和面试题库。该资料由清华大学-加州理工双料博士鲁为民领衔研发,帮助学习者掌握核心技术,把握AI时代就业机会。内容涵盖理论与实践,适合不同基础的学习者提升技能或实现职业转型。
2025-12-10 19:03:14
491
原创 【强烈收藏】30个AI智能体核心术语,助你快速掌握大模型智能系统
理解这些核心术语是设计和实现强大AI智能体系统的第一步。希望这份详细的总结能帮助您更深入地理解智能体AI的世界。
2025-12-10 15:12:27
942
原创 收藏!2026届校招AI人才图谱:薪资TOP岗超2.4万,小白入门指南在此
在大模型技术全面爆发、AI向千行百业渗透的今天,AI人才的争夺战早已硝烟弥漫。这场竞争不再局限于传统招聘季,而是提前锁定2026届高校毕业生,让校园成为AI人才储备的“核心战场”。国内头部人力资源平台前程无忧51job近期发布的《2026届校招市场AI人才需求报告》,用硬核数据揭开了企业招人的真实诉求。核心结论很明确:AI人才已成为企业校招的“必争资源”,且需求具有极强的刚性。数据显示,近60%的高科技企业将AI人才列为校招核心目标——这并非临时补岗,而是业务升级的必然要求。
2025-12-10 15:08:38
613
原创 收藏!AI Agent爆火背后:从概念到实战,程序员必懂的大模型进化密码
几十年前,手机只能打电话、发短信,没人想到今天的智能机能帮我们打车、付款、办公;就像现在,我们可能觉得Agent只是“能主动做事的AI”,但未来它可能会像智能机一样,融入我们生活的每一个角落。Agent不是炒概念的泡沫——它解决的是“软件如何更懂人、更主动服务人”的核心问题,是从“工具时代”到“助手时代”的跨越。也许再过几年,我们不会再纠结“Agent是什么”,因为它会像现在的微信、导航一样,成为我们生活中“理所当然”的一部分——而这,就是软件文明的下一次进化。
2025-12-10 15:07:09
728
原创 大模型转型必备指南:从零开始的完整学习路径,建议收藏反复阅读!
本文系统梳理了大模型领域转型路径,从明确开发、应用、研究、工程四大方向切入,详细规划学习路径:需掌握Python编程、深度学习框架及数学基础;深入理解Transformer架构、预训练微调技术;通过文本分类、机器翻译等实践项目巩固技能。同时强调参与开源社区、构建个人品牌的重要性,为从业者提供从理论到实践的全方位转型指南,突出持续学习在快速迭代领域中的关键价值。
2025-12-09 19:15:09
511
原创 【珍藏】大语言模型应用指南:RAG、微调与提示工程三种技术深度解析
文章摘要:本文探讨了大语言模型的三种知识增强方法:RAG(检索增强生成)、微调和提示工程。重点介绍了RAG技术原理及实现流程,包括使用FAISS构建向量库、文本切分和相似度检索等关键步骤,并通过动漫知识库查询实例演示了RAG的实际应用。文章比较了三种技术的优缺点,指出RAG能有效扩展模型知识边界,适合知识更新频繁的场景。
2025-12-09 19:05:54
919
原创 大模型必备:Function Call微调精髓,让模型掌握工具调用决策的艺术【收藏必看】
摘要:Function Call微调的核心难点在于决策逻辑而非工具调用本身,需要训练模型掌握业务流程、追问机制和链式调用能力。通过旅行助手Agent项目实例,作者展示了如何构建覆盖多轮对话、分支逻辑的"数据沙盒"体系,强调数据工程比模型工程更重要。完整流程包括定义标签体系、构造城市沙盒/用户画像、生成对话模板等6个步骤,最终目标是让模型学会根据业务规则正确调用工具,而非简单工具使用能力。
2025-12-09 19:05:11
657
原创 一文读懂智能体:运行机制、搭建模式与实战案例(建议收藏)
智能体是通过感知环境并自主行动达成目标的AI实体,其核心运行机制为"感知-思考-行动-观察"的闭环循环。本文系统介绍了智能体的概念、运行机制及三种搭建模式(Prompt驱动、白盒配置和混合模式),并详细解析了智能体的核心组成部分:交互界面(输入输出)和处理模块(大模型、记忆和工具)。最后通过影刀AI Power平台实例,演示了智能问答智能体的实际构建过程,包括技能配置、工具调用和知识库应用等关键环节。
2025-12-09 19:04:14
840
原创 Agno多模态大模型实战教程(八):从零构建智能应用,附完整代码+案例,建议收藏!
本教程系统讲解Agno框架中多模态大模型的应用,重点介绍qwen-vl-plus等模型在图像理解、视频分析、文档处理等场景的实践。内容涵盖模型配置、代码示例(图像识别、视频解析)、五大实战案例(智能客服、教育辅导等)及性能优化技巧。通过统一API接口,开发者可快速构建支持文本、图像、音频的多模态Agent系统,实现跨模态的智能交互与应用开发。
2025-12-09 19:03:21
1029
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅