快速排序算法优化

目录

1、固定基准

2、随机选取基准

3、三数取中

优化1:序列长度达到一定大小时,使用插入排序

优化2:聚集元素


快排的基本思想和步骤参看:

https://blog.csdn.net/ytusdc/article/details/102528482

选择基准的方式

对于分治算法,当每次划分时,算法若都能分成两个等长的子序列时,那么分治算法效率会达到最大。也就是说,基准的选择是很重要的。选择基准的方式决定了两个分割后两个子序列的长度,进而对整个算法的效率产生决定性影响。

最坏情况下,待排序数组已经基本有序了,每次划分过程产生两个区域分别包含n-1个元素和1个元素,其时间复杂度会达到O(n^2)。在最好的情况下,每次划分所取的基准都恰好是中值,即每次划分恰好能把待排序序列分成两个等长的子序列。此时,快排的时间复杂度为O(nlogn)

1、固定基准

思想:取序列的第一个或最后一个元素作为基准。

通常写的快排算法

分析:如果输入序列是随机的,处理时间可以接受的。如果数组已经有序时,此时的分割就是一个非常不好的分割。因为每次划分只能使待排序序列减一,此时为最坏情况,快速排序沦为起泡排序,时间复杂度为Θ(n^2)。而且,输入的数据是有序或部分有序的情况是相当常见的。因此,使用第一个元素作为枢纽元是非常糟糕的,为了避免这个情况,就引入了下面两个获取基准的方法。
 

2、随机选取基准

引入的原因:在待排序列是部分有序时,固定选取枢轴使快排效率底下,要缓解这种情况,就引入了随机选取枢轴

思想:取待排序列中任意一个元素作为基准

随机化算法:

/*随机选择枢轴的位置,区间在low和high之间*/  
int SelectPivotRandom(int arr[],int low,int high)  
{  
    //产生枢轴的位置  
    srand((unsigned)time(NULL));  
    int pivotPos = rand()%(high - low) + low;  

    //把枢轴位置的元素和low位置元素互换,此时可以和普通的快排一样调用划分函数  
    swap(arr[pivotPos],arr[low]);  
    return arr[low];  
}  

swap之后第一个元素为随机选的元素值了,后面跟跟快排一样了。

分析:这是一种相对安全的策略。由于枢轴的位置是随机的,那么产生的分割也不会总是会出现劣质的分割。在整个数组数字全相等时,仍然是最坏情况,时间复杂度是O(n^2)。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”
 

3、三数取中

虽然随机选取枢轴时,减少出现不好分割的几率,但是还是最坏情况下还是O(n^2),要缓解这种情况,就引入了三数取中选取枢轴。 它的思想是:由于随机性并没有多大的帮助,选取数组开头,中间和结尾的元素,通过比较,选择中间的值作为快排的基准。其实可以将这个数字扩展到更大(例如5数取中,7数取中等)。这种方式能很好的解决待排数组基本有序的情况,而且选取的基准没有随机性。

具体思想:对待排序序列中low、mid、high三个位置上数据进行排序,取他们中间的那个数据作为枢轴,并用low下标元素存储枢轴。

当然可以将三个位置元素交换使得 arr[mid] <= arr[low] <= arr[high]

int NumberOfThree(int arr[],int low,int high)
{
    //计算数组中间的元素的下标  ,右移相当于除以2
	int mid = low + ((high - low) >> 1);
	if (arr[mid] > arr[high])
	{
		Swap(arr[mid],arr[high]);
	}
	if (arr[low] > arr[high])
	{
		Swap(arr[low],arr[high]);
	}
	if (arr[mid] > arr[low]) 
	{
		Swap(arr[mid],arr[low]);
	}
	//此时,arr[mid] <= arr[low] <= arr[high]
	return arr[low];

    //low的位置上保存这三个位置中间的值  
    //分割时可以直接使用low位置的元素作为枢轴,而不用改变分割函数了  
}

分析:使用三数取中选择枢轴优势还是很明显的,但是还是处理不了重复数组

优化1:序列长度达到一定大小时,使用插入排序

对于很小和部分有序的数组,快排不如插排好。当待排序序列的长度分割到一定大小后,继续分割的效率比插入排序要差,此时可以使用插排而不是快排

截止范围:待排序序列长度N = 10,虽然在5~20之间任一截止范围都有可能产生类似的结果,这种做法也避免了一些有害的退化情形。摘自《数据结构与算法分析》Mark Allen Weiness 著

template <class T>
void QSort(T arr[],int low,int high)
{
    int pivotPos;
    if (high - low + 1 < 10)
    {
        InsertSort(arr,low,high);
    } 
    else
    // 正常执行快排  
    {
        pivotPos = Partition(arr,low,high);
        QSort(arr,low,pivotPos-1);
        QSort(arr,pivotPos+1,high);
    }
}

分析:针对随机数组,使用三数取中选择枢轴+插排,效率还是可以提高一点,真是针对已排序的数组,是没有任何用处的。因为待排序序列是已经有序的,那么每次划分只能使待排序序列减一。此时,插排是发挥不了作用的。所以这里看不到时间的减少。另外,三数取中选择枢轴+插排还是不能处理重复数组

优化2:聚集元素

聚集元素的思想:在一次分割结束后,将与本次基准相等的元素聚集在一起,再分割时,不再对聚集过的元素进行分割。

具体过程有两步,

①在划分过程中将与基准值相等的元素放入数组两端

②划分结束后,再将两端的元素移到基准值周围。

示例1:

待排序序列 1 4 6 7 6 6 7 6 8 6

三数取中选取枢轴:下标为4的数6

转换后,待分割序列:6 4 6 7 1 6 7 6 8 6

                  枢轴key:6

本次划分后,未对与key元素相等处理的结果:1 4 6 6 7 6 7 6 8 6

下次的两个子序列为:1 4 6 和 7 6 7 6 8 6

本次划分后,对与key元素相等处理的结果:1 4 6 6 6 6 6 7 8 7

下次的两个子序列为:1 4 和 7 8 7

经过对比,我们可以看出,在一次划分后,把与key相等的元素聚在一起,能减少迭代次数,效率会提高不少

具体过程示例2:

待排序序列 1 4 6 7 6 6 7 6 8 6

三数取中选取枢轴:下标为4的数6

转换后,待分割序列:6 4 6 7 1 6 7 6 8 6

         枢轴key:6
第一步,在划分过程中,把与key相等元素放入数组的两端
结果为:6 4 1 6(枢轴) 7 8 7 6 6 6

此时,与6相等的元素全放入在两端了

第二步,划分结束后,把与key相等的元素移到枢轴周围

结果为:1 4 66(枢轴) 6 6 6 7 8 7

此时,与6相等的元素全移到枢轴周围了

之后,在1 4 和 7 8 7两个子序列进行快排
 

void QSort(int arr[],int low,int high)  
{  
    int first = low;  
    int last = high;  

    int left = low;  
    int right = high;  

    int leftLen = 0;   // 左边重复元素个数
    int rightLen = 0;  // 右边重复元素个数

    if (high - low + 1 < 10)  
    {  
        InsertSort(arr,low,high);  
        return;  
    }  

    //一次分割  
    int key = SelectPivotMedianOfThree(arr,low,high);//使用三数取中法选择枢轴  

    while(low < high)  
    {  
        while(high > low && arr[high] >= key)  
        {  
            if (arr[high] == key)//处理相等元素  
            {  
                swap(arr[right],arr[high]);  
                right--;  
                rightLen++;  
            }  
            high--;  
        }  
        arr[low] = arr[high];  
        while(high > low && arr[low] <= key)  
        {  
            if (arr[low] == key)  
            {  
                swap(arr[left],arr[low]);  
                left++;  
                leftLen++;  
            }  
            low++;  
        }  
        arr[high] = arr[low];  
    }  
    arr[low] = key;  

    //一次快排结束  
    //把与枢轴key相同的元素移到枢轴最终位置周围  
    int i = low - 1;  
    int j = first;  
    while(j < left && arr[i] != key)  
    {  
        swap(arr[i],arr[j]);  
        i--;  
        j++;  
    }  
    i = low + 1;  
    j = last;  
    while(j > right && arr[i] != key)  
    {  
        swap(arr[i],arr[j]);  
        i++;  
        j--;  
    }  
    QSort(arr,first,low - 1 - leftLen);  
    QSort(arr,low + 1 + rightLen,last);  
}  

测试数据分析:三数取中选择枢轴+插排+聚集相等元素的组合,效果竟然好的出奇。

原因:在数组中,如果有相等的元素,那么就可以减少不少冗余的划分。这点在重复数组中体现特别明显啊。

其实这里,插排的作用还是不怎么大的。

参考文章:

https://blog.csdn.net/qq_38289815/article/details/82718428

https://blog.csdn.net/hacker00011000/article/details/52176100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值