洛谷 P1004 方格取数(四维动归)

本文探讨了一个复杂的动态规划问题,旨在通过四维动态规划算法寻找在一个N×N方格图中两条路径的最大数值和。文章详细介绍了算法的实现过程,包括状态转移方程和边界条件设定,以及如何避免重复计数同一位置的数值。
摘要由CSDN通过智能技术生成

题目描述

设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00。如下图所示(见样例):

A
 0  0  0  0  0  0  0  0
 0  0 13  0  0  6  0  0
 0  0  0  0  7  0  0  0
 0  0  0 14  0  0  0  0
 0 21  0  0  0  4  0  0
 0  0 15  0  0  0  0  0
 0 14  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
                         B

某人从图的左上角的AA点出发,可以向下行走,也可以向右走,直到到达右下角的BB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字00)。
此人从AA点到BB点共走两次,试找出22条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:

 

输入的第一行为一个整数NN(表示N \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的00表示输入结束。

 

输出格式:

 

只需输出一个整数,表示22条路径上取得的最大的和。

 

输入输出样例

输入样例#1: 复制

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

输出样例#1: 复制

67

说明

NOIP 2000 提高组第四题

 

题解:第一次接触四维动归....看了题解才知道还可以双线程的走法。

刚开始想用贪心,实际上贪心是不行的,因为最大的两个值不一定是两次最大的dp之和。

动归方程就是:dp[i][j][k][l]=max(max(dp[i][j-1][k][l-1],dp[i][j-1][k-1][l]),max(dp[i-1][j][k][l-1],dp[i-1][j][k-1][l]))+s[i][j]+s[k][l];

dp[i][j][k][l]的意思就是表示一个人走到(i,j),另一个人走到(k,l)时候的最大值.

 

#include<iostream>
using namespace std;
int s[20][20],dp[20][20][20][20];
int main()
{
    int n,a,b,c;
    cin>>n;
    for(int i=1;;i++)
    {
        cin>>a>>b>>c;
        if(a==0&&b==0&&c==0)
            break;
        s[a][b]=c;
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=n;k++)
                for(int l=1;l<=n;l++)
    {
        dp[i][j][k][l]=max(max(dp[i][j-1][k][l-1],dp[i][j-1][k-1][l]),max(dp[i-1][j][k][l-1],dp[i-1][j][k-1][l]))+s[i][j]+s[k][l];
        if(i==k&&j==l)
            dp[i][j][k][l]-=s[i][j];
    }
    cout<<dp[n][n][n][n]<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值