题目描述
设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的AA点出发,可以向下行走,也可以向右走,直到到达右下角的BB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字00)。
此人从AA点到BB点共走两次,试找出22条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数NN(表示N \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的00表示输入结束。
输出格式:
只需输出一个整数,表示22条路径上取得的最大的和。
输入输出样例
输入样例#1: 复制
8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0
输出样例#1: 复制
67
说明
NOIP 2000 提高组第四题
题解:第一次接触四维动归....看了题解才知道还可以双线程的走法。
刚开始想用贪心,实际上贪心是不行的,因为最大的两个值不一定是两次最大的dp之和。
动归方程就是:dp[i][j][k][l]=max(max(dp[i][j-1][k][l-1],dp[i][j-1][k-1][l]),max(dp[i-1][j][k][l-1],dp[i-1][j][k-1][l]))+s[i][j]+s[k][l];
dp[i][j][k][l]的意思就是表示一个人走到(i,j),另一个人走到(k,l)时候的最大值.
#include<iostream>
using namespace std;
int s[20][20],dp[20][20][20][20];
int main()
{
int n,a,b,c;
cin>>n;
for(int i=1;;i++)
{
cin>>a>>b>>c;
if(a==0&&b==0&&c==0)
break;
s[a][b]=c;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
for(int l=1;l<=n;l++)
{
dp[i][j][k][l]=max(max(dp[i][j-1][k][l-1],dp[i][j-1][k-1][l]),max(dp[i-1][j][k][l-1],dp[i-1][j][k-1][l]))+s[i][j]+s[k][l];
if(i==k&&j==l)
dp[i][j][k][l]-=s[i][j];
}
cout<<dp[n][n][n][n]<<endl;
return 0;
}