- 博客(9)
- 收藏
- 关注
原创 基于pytorch版本facenet与自己的数据集训练人脸识别模型
好久没写了,感觉最近懈怠了QAQ。。。教程代码使用的是这个链接里的https://github.com/timesler/facenet-pytorch这个项目包含了pytorch版本的人脸检测模块MTCNN和由tensorflow版本facenet移植来的InceptionResnetV1权重。下面介绍一下怎么样用自己的数据集训练一个简单的人脸识别模型,可能不会对网络结构和原理做太多说明。1.实现这个项目用的是开源的facenet-pytorch这套代码,有三种安装方式(由于我是在colab.
2021-03-11 11:08:17 10676 29
原创 人脸识别的技术与攻击技术简要概述
根据查到的资料,整理了一些,感觉还不够详细,先简单记录一下一、人脸识别技术(2D,2.5D,3D)二、人脸识别攻击(照片、视频、面具)三、人脸攻击的反欺骗技术四、人脸攻防案例4.1 腾讯优图实验室:人脸安全技术的研究与应用(1)人脸攻击的形式(2)针对人脸攻击的防御算法...
2021-02-04 11:07:18 2842
原创 AI测试的知识整理1
一、AI测试的内容简介(AI测试是什么https://www.php.cn/faq/433940.html)二、测试方法(先做一个简单记录,准确性还需要查阅考证https://www.jianshu.com/p/3966b2a18610)三、AI安全威胁风险(参考自腾讯AI实验室文档)文字前的小饼图代表该方法的成熟度,绿色越多代表方法越成熟...
2021-01-18 11:25:16 1336 2
原创 特征去噪以提高对抗鲁棒性
《Feature Denoising for Improving Adversarial Robustness》论文翻译摘要对图像分类系统的对抗性攻击给卷积网络带来了挑战和理解它们的机会。这项研究表明,对抗性的图像干扰导致这些网络构造的特征噪声。基于这一观察,我们开发了新的网络架构,通过执行特征去噪来增加对抗的鲁棒性。具体来说,我们的网络包含使用非本地方法或其他过滤器去噪特征的块;整个网络都是端到端的训练。当与对抗训练相结合时,我们的特征去噪网络在白盒和黑盒攻击设置中显著提高了对抗鲁棒性的最先进水平
2021-01-14 16:31:03 3506
原创 C&W论文阅读
最近要读的论文比较多,翻译的比较匆忙,感兴趣的朋友们可以大致看看评价神经网络的鲁棒性摘要神经网络为大多数机器学习任务提供了最先进的结果。不幸的是,神经网络在对抗的例子中是脆弱的:给定一个输入x和任何目标分类t,有可能找到一个类似于x但分类为t的新输入x0。这使得神经网络难以应用于安全关键领域。防御蒸馏是最近提出的一种方法,它可以采用任意神经网络,并提高其鲁棒性,将当前攻击的成功率从95%降低到0.5%。在本文中,我们通过引入三种新的攻击算法来证明防御蒸馏并没有显著提高神经网络的鲁棒性,这三种算法
2021-01-07 14:03:46 2649
原创 DeepFool论文阅读
英文不大好,论文翻译这类博客都是机器翻译用来自己阅读的,大家有兴趣的随便看看就好DeepFool:一种简单而准确的愚弄深度神经网络的方法摘要最先进的深度神经网络已经在许多图像分类任务中取得了令人印象深刻的结果。然而,这些相同的架构已经被证明是不稳定的小,良好的寻找,图像的扰动。尽管这一现象很重要,但还没有提出有效的方法来精确计算最先进的深度分类器对大规模数据集上这种扰动的鲁棒性。在本文中,我们填补了这一空白,并提出了深度愚人算法来有效地计算愚弄深度网络的扰动,从而可靠地量化这些分类器的鲁棒...
2021-01-05 14:01:06 681
原创 tensorflow1,tensoflow2+keras,pytorch模型格式与引入
tensorflow1,tensoflow2+keras,pytorch模型格式与引入最近整理了一下这三个框架的模型格式与引入语句,可能有不太精准的地方,在2020最后一天先做一个简单的说明吧。欢迎大家指出问题,共同进步。一.tensorflow模型格式1. tensorflow 0.11以前的版本保存得到的模型为如下3个文件checkpoint 为一个文本文件,记录训练过程中中间节点上保存的模型名称,首行记录最近一次保存的模型名称model.meta meta文件保存完整的ten...
2020-12-31 16:16:27 588 2
原创 FGSM论文阅读
英文不好,,翻译一般,有些不太通顺的地方《解释和利用不利的例子》摘要包括神经网络在内的几种机器学习模型始终对一些容易造成误解的示例进行错误分类,这些干扰示例是通过对数据集中的示例进行一些微小但坏的扰动后形成的输入,受扰动的输入会导致模型以高置信度输出错误答案,早期对这种现象的解释集中于非线性和过度拟合。相反,我们认为神经网络容易受到对抗性扰动的主要原因是因为它们的线性特性,这种解释得到一些新的定量结果的支持,同时对一些有关这方面内容的有趣事实进行了首次解释,对它们的体系结构以及与训练集之间的关系
2020-08-12 12:43:04 1097
原创 YOLOv3网络结构的理解
YOLOv3网络结构的理解第一次写博客,参考一些资料总结了一些有关YOLOv3目标检测网络理解方面的内容。如有不当之处欢迎大家批评指正!一、模块说明 模块名称 模块含义 模块作用 CBL (conv+BN+Leaky relu) CBL为卷积块:由Conv,Batch Normalization,Leaky relu 这三个网络层组成。 Conv层为卷积层,对输入图像采用多个
2020-08-07 13:55:32 9492 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人