杨桃的Python机器学习3——单特征与多特征、训练集与测试集

本文探讨了在机器学习中如何处理单特征与多特征,以及如何划分训练集与测试集。通过线性规划问题为例,解释了多个特征如何对应一个标签。接着,介绍了将数据集分为训练集(70%~80%)和测试集(20%~30%)的常见做法,并用Python代码展示了如何实现这一过程。最后,强调了在机器学习中X_train、y_train、X_test和y_test变量的含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人CSDN博客专栏:https://blog.csdn.net/yty_7

Github地址:https://github.com/yot777/

 

单特征与多特征

在上一节标签和特征的示例中,我们使用的是标签和特征一一对应:

  特征(身高,以米为单位) 标签
A 1.51 0
B 1.61 1
C 1.76 1
D 2.1 1
E 1.58
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值