Spark中的窄依赖和宽依赖

1 概述

今天我们来谈一谈Spark中的窄依赖和宽依赖。RDD大家应该有一定的理解了,弹性的分布式数据集,这里的弹性依赖于RDD之间的依赖关系,即使数据丢失也能重新计算。RDD之间的依赖关系又分为窄依赖和宽依赖,那到底什么是窄依赖什么是宽依赖呢?带着这个问题进入我们今天的学习。

2 窄依赖和宽依赖

2.1Lineage血统

Lineage保存了RDD的依赖关系。 RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

2.2窄依赖

窄依赖定义:一个父RDD的partition至多被子RDD的某个partition使用一次。
读起来试试感觉不是那么容易理解哈,下面我们配一张图小伙伴们对着理解这句话就容易了。
这里写图片描述
哪些操作是窄依赖呢,图上也有说明:对于map,filter,union ,join(co-partitioned)制定了父RDD中的分片具体交给哪个唯一的子RDD。这些都是窄依赖,不会产生shuffle的。

2.3 宽依赖

宽依赖定义: 一个父RDD的partition会被子RDD的某个partition使用多次。
这里写图片描述
宽依赖是会产生shuffle的,对于groupByKey,join with inputs not co-partitioned,xxbykey(通过key分发都会产生shuffle)

2.4窄依赖于宽依赖对比
  1. 宽依赖往往对应着shuffle操作,需要在运行过程中将同一个父RDD的分区传入到不同的子RDD分区中,中间可能涉及多个节点之间的数据传输;而窄依赖的每个父RDD的分区只会传入到一个子RDD分区中,通常可以在一个节点内完成转换。
  2. 当RDD分区丢失时(某个节点故障),spark会对数据进行重算。
    对于窄依赖,由于父RDD的一个分区只对应一个子RDD分区,这样只需要重算和子RDD分区对应的父RDD分区即可,所以这个重算对数据的利用率是100%的;
    对于宽依赖,重算的父RDD分区对应多个子RDD分区,这样实际上父RDD 中只有一部分的数据是被用于恢复这个丢失的子RDD分区的,另一部分对应子RDD的其它未丢失分区,这就造成了多余的计算;更一般的,宽依赖中子RDD分区通常来自多个父RDD分区,极端情况下,所有的父RDD分区都要进行重新计算。
    如下图所示,b1分区丢失,则需要重新计算a1,a2和a3,这就产生了冗余计算(a1,a2,a3中对应b2的数据)。

这里写图片描述

总结: 区分这两种依赖很有用。首先,窄依赖允许在一个集群节点上以流水线的方式(pipeline)计算所有父分区。例如,逐个元素地执行map、然后filter操作;而宽依赖则需要首先计算好所有父分区数据,然后在节点之间进行Shuffle,这与MapReduce类似。第二,窄依赖能够更有效地进行失效节点的恢复,即只需重新计算丢失RDD分区的父分区,而且不同节点之间可以并行计算;而对于一个宽依赖关系的Lineage图,单个节点失效可能导致这个RDD的所有祖先丢失部分分区,因而需要整体重新计算。

  • 窄依赖的函数有:map, filter, union, join(父RDD是hash-partitioned ), mapPartitions, mapValues
  • 宽依赖的函数有:groupByKey, join(父RDD不是hash-partitioned ), partitionBy
2.5Stage过程的理解

进行如下操作,通过UI界面查看DAG图:

sc.textFile("file:///home/hadoop/data/input.txt").flatMap(_.split("\t")).map((_,1)).reduceByKey(_+_).collect

这里写图片描述

  • 一些基本概念
  1. 一个job中会有n个stage,每个stage对应n个task,task数量适合partition相对应的,stage是提交任务的最小单位。
  2. 在spark中,Task的类型分为2种:ShuffleMapTask和ResultTask;简单来说,DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中;也就是说图2中的stage1和stage2相当于mapreduce中的Mapper,而ResultTask所代表的stage3就相当于mapreduce中的reducer。
  • 解析DAG图
    上图产生了2个stage,那这2个stage是怎么划分的呢?上面我们说了窄依赖是不是产生shuffle的宽依赖才会产生shuffle,如果job中有多次shuffle,那么每个shuffle之前都是一个stage。这里的reduceByKey产生了shuffle所以划分为两个stage,而在reduceByKey之前的flatMap和map操作是窄依赖所以划分为一个stage,所以一共2个stage。总的来说n个shuffle就会产生(n+1)个stage。

  • 补充
    这里写图片描述
    这里是网上找的一个图片,大家试着能不能理解呢?

总结,至此相信大家对于依赖有了一定的了解了吧,通过DAG图进行了一个详细的说明,可能这里也涉及到了shuffle的过程,在这之前大家可以先去看看mr的计算流程对于spark的shuffle会有一个更好的理解。

<think>好的,我现在需要帮助用户理解Spark中的依赖窄依赖的区别及其工作原理。首先,我得回忆一下自己关于Spark的知识,尤其是RDD依赖关系的部分。 用户给出的问题很明确,他们想了解依赖窄依赖的概念及区别,还有它们的工作原理。根据提供的引用资料,我需要将这些信息整合起来,用清晰的中文回答,同时遵循格式要求,比如行内数学表达式用$...$,独立公式用$$...$$,虽然目前可能用不上数学公式,但如果有相关例子可能需要考虑。不过,这个问题可能主要涉及概念性的内容,不太涉及数学表达式,但需要保持结构清晰。 首先,我应该从基本定义入手。根据引用[1],窄依赖是RDD依赖的两种类型。窄依赖指的是父RDD的每个分区最多被一个子RDD分区使用,而依赖则是父RDD的分区被多个子RDD分区使用。这点需要明确说明。 接下来,引用[3]提到,DAGScheduler根据窄依赖划分stage依赖会划分stage,而窄依赖则不会,这涉及到任务执行的优化,比如流水线处理。这里需要解释为什么依赖会导致stage划分,可能因为需要shuffle操作,导致数据重新分布,必须等待前面的任务完成才能进行下一步。 然后,引用[4]列举了窄依赖的一些操作,比如map、filter、union等,而依赖的例子包括groupByKey、join(非哈希分区的父RDD)、reduceByKey等。这些例子有助于用户理解具体哪些转换操作会导致哪种依赖。 区别部分需要分点列出,比如数据分布、性能影响、容错恢复stage划分。例如,窄依赖允许流水线优化,数据在同一个节点处理,而依赖需要shuffle,网络传输多,性能较低。容错方面,窄依赖恢复快,依赖则需要重新计算多个父分区。 工作原理方面,需要结合stage划分DAG调度。任务执行时,依赖作为stage的分界点,每个stage内部是窄依赖,可以并行执行,而依赖需要等待前面stage完成。这影响了任务的执行效率容错机制。 可能还需要提到窄依赖Spark程序优化的影响,如引用[2]所说,正确识别这些依赖有助于设计高效的程序,比如减少shuffle操作,尽量使用窄依赖来提升性能。 现在要检查是否有遗漏的信息,或者是否需要进一步澄清某些点。例如,是否要解释为什么join有时候是窄依赖,有时候是依赖,根据父RDD是否已经哈希分区,这点引用[4]提到过,所以需要说明不同情况下的区别。 最后,生成相关问题,可能需要围绕应用场景、优化方法、性能影响等方面提问,确保用户能进一步探索相关内容。 在组织回答时,要确保结构清晰,分点说明,使用用户提供的引用标注,比如在说明stage划分时引用[3],在列举操作时引用[4]等。同时,注意使用正确的格式,比如代码块用反引号,问题部分用§§符号分隔。 现在,我需要将这些思考整理成一个自然流畅的回答,确保符合用户的要求,并且正确引用提供的资料。可能还需要检查是否有技术错误,比如窄依赖的准确定义,以及例子是否正确,避免误导用户。</think>### Spark依赖窄依赖的区别及工作原理 #### 1. **基本概念** - **窄依赖Narrow Dependency)** 父RDD的每个分区最多被一个子RDD分区引用,数据不需要跨节点传输。例如`map`、`filter`等操作[^4]。 $$ \text{父分区} \rightarrow \text{唯一子分区} $$ - **依赖(Shuffle依赖/Wide Dependency)** 父RDD的每个分区可能被多个子RDD分区引用,需要跨节点传输数据(Shuffle)。例如`groupByKey`、非哈希分区的`join`[^3][^4]。 $$ \text{父分区} \rightarrow \text{多个子分区} $$ #### 2. **核心区别** | 特性 | 窄依赖 | 依赖 | |---------------------|----------------------------|---------------------------------| | **数据分布** | 数据局部处理,无需Shuffle | 需Shuffle,数据重新分配[^1] | | **性能影响** | 支持流水线优化,高效执行 | 网络传输开销大,性能较低[^2] | | **容错恢复** | 仅需重新计算单个父分区 | 需重新计算多个父分区[^3] | | **Stage划分依据** | 不触发Stage划分 | 触发Stage分界点(DAG调度) | #### 3. **工作原理** - **Stage划分** Spark根据依赖DAG划分为多个Stage,每个Stage内部仅包含窄依赖,可并行执行。依赖作为Stage边界,需等待前驱Stage完成后才能执行。 - **执行优化** 窄依赖支持流水线优化(如`map`后直接`filter`),而依赖需等待Shuffle完成[^1]。 #### 4. **示例说明** - **窄依赖操作** ```python rdd = sc.parallelize([1,2,3]) mapped = rdd.map(lambda x: x*2) # 窄依赖 ``` 父RDD的每个分区数据直接映射到子分区。 - **依赖操作** ```python grouped = rdd.groupByKey() # 依赖(需Shuffle) ``` 数据需按Key重新分布到不同节点。 #### 5. **应用影响** - 减少依赖可优化性能(如用`reduceByKey`替代`groupByKey`)。 - 窄依赖利于快速容错恢复,依赖需冗余存储或检查点机制。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值