1.环境
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.2.0</spark.version>
<kudu.version>1.5.0</kudu.version>
</properties>
2.测试代码
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.kudu.client._
import collection.JavaConverters._
object KuduApp {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("KuduApp").master("local[2]").getOrCreate()
//Read a table from Kudu
val df = spark.read
.options(Map("kudu.master" -> "10.19.120.70:7051", "kudu.table" -> "test_table"))
.format("kudu").load
df.schema.printTreeString()
// // Use KuduContext to create, delete, or write to Kudu tables
// val kuduContext = new KuduContext("10.19.120.70:7051", spark.sparkContext)
//
//
// // The schema is encoded in a string
// val schemalString="id,age,name"
//
// // Generate the schema based on the string of schema
// val fields=schemalString.split(",").map(filedName=>StructField(filedName,StringType,nullable =true ))
// val schema=StructType(fields)
//
//
// val KuduTable = kuduContext.createTable(
// "test_table", schema, Seq("id"),
// new CreateTableOptions()
// .setNumReplicas(1)
// .addHashPartitions(List("id").asJava, 3)).getSchema
//
// val id = KuduTable.getColumn("id")
// print(id)
//
// kuduContext.tableExists("test_table")
}
}
现象:通过spark sql 操作报如下错误:
Exception in thread "main" java.lang.ClassNotFoundException: Failed to find data source: kudu. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:549)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:301)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:146)
at cn.zhangyu.KuduApp$.main(KuduApp.scala:18)
at cn.zhangyu.KuduApp.main(KuduApp.scala)
Caused by: java.lang.ClassNotFoundException: kudu.DefaultSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
at scala.util.Try.orElse(Try.scala:84)
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:533)
... 7 more
而通过KuduContext是可以操作的没有报错,代码为上面注解部分
3 解决思路
查询kudu官网:kudu官网
官网中说出了版本的问题:
如果将Spark 2与Scala 2.11一起使用,请使用kudu-spark2_2.11工件。
kudu-spark版本1.8.0及更低版本的语法略有不同。有关有效示例,请参阅您的版本的文档。可以在发布页面上找到版本化文档。
spark-shell --packages org.apache.kudu:kudu-spark2_2.11:1.9.0
看到了 官网使用的是1.9.0的版本.
但是但是但是:
官网下面说到了下面几个集成问题:
-
Spark 2.2+在运行时需要Java 8,即使Kudu Spark 2.x集成与Java 7兼容。Spark 2.2是Kudu 1.5.0的默认依赖版本。
-
当注册为临时表时,必须为名称包含大写或非ascii字符的Kudu表分配备用名称。
-
包含大写或非ascii字符的列名的Kudu表不能与SparkSQL一起使用。可以在Kudu中重命名列以解决此问题。
-
<>并且OR谓词不会被推送到Kudu,而是由Spark任务进行评估。只有LIKE带有后缀通配符的谓词才会被推送到Kudu,这意味着它LIKE "FOO%"被推下但LIKE "FOO%BAR"不是。
-
Kudu不支持Spark SQL支持的每种类型。例如, Date不支持复杂类型。
-
Kudu表只能在SparkSQL中注册为临时表。使用HiveContext可能无法查询Kudu表。
那就很奇怪了我用的1.5.0版本报错为:找不到类,数据源有问题
但是把kudu改成1.9.0 问题解决
运行结果:
root
|-- id: string (nullable = false)
|-- age: string (nullable = true)
|-- name: string (nullable = true)
4 Spark集成最佳实践
- 每个群集避免多个Kudu客户端。
一个常见的Kudu-Spark编码错误是实例化额外的KuduClient对象。在kudu-spark中,a KuduClient属于KuduContext。Spark应用程序代码不应创建另一个KuduClient连接到同一群集。相反,应用程序代码应使用KuduContext访问KuduClient使用 KuduContext#syncClient。
// Use KuduContext to create, delete, or write to Kudu tables
val kuduContext = new KuduContext("10.19.120.70:7051", spark.sparkContext)
val list = kuduContext.syncClient.getTablesList.getTablesList
if (list.iterator().hasNext){
print(list.iterator().next())
}
- 要诊断KuduClientSpark作业中的多个实例,请查看主服务器的日志中的符号,这些符号会被来自不同客户端的许多GetTableLocations或 GetTabletLocations请求过载,通常大约在同一时间。这种症状特别适用于Spark Streaming代码,其中创建KuduClient每个任务将导致来自新客户端的主请求的周期性波。