Kudu与Spark 集成

4 篇文章 0 订阅
2 篇文章 0 订阅

1.环境

 <properties>
    <scala.version>2.11.8</scala.version>
    <spark.version>2.2.0</spark.version>
    <kudu.version>1.5.0</kudu.version>
  </properties>

2.测试代码

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.kudu.client._
import collection.JavaConverters._

object KuduApp {
  def main(args: Array[String]): Unit = {

    val spark = SparkSession.builder().appName("KuduApp").master("local[2]").getOrCreate()

     //Read a table from Kudu
    val df = spark.read
          .options(Map("kudu.master" -> "10.19.120.70:7051", "kudu.table" -> "test_table"))
          .format("kudu").load
        df.schema.printTreeString()


//    // Use KuduContext to create, delete, or write to Kudu tables
//    val kuduContext = new KuduContext("10.19.120.70:7051", spark.sparkContext)
//
//
//    // The schema is encoded in a string
//    val schemalString="id,age,name"
//
//    // Generate the schema based on the string of schema
//    val fields=schemalString.split(",").map(filedName=>StructField(filedName,StringType,nullable =true ))
//    val schema=StructType(fields)
//
//
//    val KuduTable = kuduContext.createTable(
//     "test_table", schema, Seq("id"),
//     new CreateTableOptions()
//       .setNumReplicas(1)
//       .addHashPartitions(List("id").asJava, 3)).getSchema
//
//    val  id  = KuduTable.getColumn("id")
//    print(id)
//
//    kuduContext.tableExists("test_table")
  }
}

现象:通过spark sql 操作报如下错误:

Exception in thread "main" java.lang.ClassNotFoundException: Failed to find data source: kudu. Please find packages at http://spark.apache.org/third-party-projects.html
	at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:549)
	at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:86)
	at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:86)
	at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:301)
	at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178)
	at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:146)
	at cn.zhangyu.KuduApp$.main(KuduApp.scala:18)
	at cn.zhangyu.KuduApp.main(KuduApp.scala)
Caused by: java.lang.ClassNotFoundException: kudu.DefaultSource
	at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
	at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
	at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
	at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
	at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
	at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
	at scala.util.Try$.apply(Try.scala:192)
	at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
	at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
	at scala.util.Try.orElse(Try.scala:84)
	at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:533)
	... 7 more

而通过KuduContext是可以操作的没有报错,代码为上面注解部分

3 解决思路

查询kudu官网:kudu官网

官网中说出了版本的问题:
如果将Spark 2与Scala 2.11一起使用,请使用kudu-spark2_2.11工件。
kudu-spark版本1.8.0及更低版本的语法略有不同。有关有效示例,请参阅您的版本的文档。可以在发布页面上找到版本化文档。
spark-shell --packages org.apache.kudu:kudu-spark2_2.11:1.9.0
看到了 官网使用的是1.9.0的版本.

但是但是但是:
官网下面说到了下面几个集成问题:

  1. Spark 2.2+在运行时需要Java 8,即使Kudu Spark 2.x集成与Java 7兼容。Spark 2.2是Kudu 1.5.0的默认依赖版本。

  2. 当注册为临时表时,必须为名称包含大写或非ascii字符的Kudu表分配备用名称。

  3. 包含大写或非ascii字符的列名的Kudu表不能与SparkSQL一起使用。可以在Kudu中重命名列以解决此问题。

  4. <>并且OR谓词不会被推送到Kudu,而是由Spark任务进行评估。只有LIKE带有后缀通配符的谓词才会被推送到Kudu,这意味着它LIKE "FOO%"被推下但LIKE "FOO%BAR"不是。

  5. Kudu不支持Spark SQL支持的每种类型。例如, Date不支持复杂类型。

  6. Kudu表只能在SparkSQL中注册为临时表。使用HiveContext可能无法查询Kudu表。

那就很奇怪了我用的1.5.0版本报错为:找不到类,数据源有问题

但是把kudu改成1.9.0 问题解决

运行结果:

root
 |-- id: string (nullable = false)
 |-- age: string (nullable = true)
 |-- name: string (nullable = true)

4 Spark集成最佳实践

  1. 每个群集避免多个Kudu客户端。
    一个常见的Kudu-Spark编码错误是实例化额外的KuduClient对象。在kudu-spark中,a KuduClient属于KuduContext。Spark应用程序代码不应创建另一个KuduClient连接到同一群集。相反,应用程序代码应使用KuduContext访问KuduClient使用 KuduContext#syncClient。
  // Use KuduContext to create, delete, or write to Kudu tables
    val kuduContext = new KuduContext("10.19.120.70:7051", spark.sparkContext)

    val list = kuduContext.syncClient.getTablesList.getTablesList
    if (list.iterator().hasNext){
      print(list.iterator().next())
    }
  1. 要诊断KuduClientSpark作业中的多个实例,请查看主服务器的日志中的符号,这些符号会被来自不同客户端的许多GetTableLocations或 GetTabletLocations请求过载,通常大约在同一时间。这种症状特别适用于Spark Streaming代码,其中创建KuduClient每个任务将导致来自新客户端的主请求的周期性波。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值