zcmu-1184(矩阵乘法)

1184: 帮我求算一下斐波那契数吧

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 221   Solved: 42
[ Submit][ Status][ Web Board]

Description

AYY小朋友对斐波那契数非常感兴趣,他知道f[1]=1,f[2]=1,并且从第三个斐波那契数开始f[n]=f[n-2]+f[n-1](n>=3),可是AYY小朋友只会计算前十个斐波那契数,因此他向你请教,让你帮忙计算第N个斐波那契数是多少,但是由于结果非常大,只需告诉他对1000000007取模的结果。

Input

多组测试数据
每行一个n(1<=n<=2^32-1)

Output

输出第n个斐波那契数的结果(对1000000007取模)

Sample Input

110100100010000

Sample Output

155687995182517691607271496360

HINT

Source

解析:n很大求斐波那契数,按照正常的思路不是超时就是爆内存。这时候就有一个的更好的求的方法:矩阵乘法。

矩阵乘法,通常可以缩减内存很省时,但是难理解。

矩阵快速幂:
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000007的结果即可。

引例  :求斐波那契数列的第 n 项 mod 1000000007 的值, n <= 10  18  。


分析 :斐波那契数列的递推式为 f(n) = f(n-1)+f(n-2) ,直接循环求出 f(n) 的时间复杂度是 O(n) ,对于题目中的数据范围显然无法承受。很明显我们需要对数级别的算法。由于 f(n) = 1*f(n-1) + 1*f(n-2) 这样的形式很类似于矩阵的乘法,所以我们可以先把这个问题复杂化一下,将递推求解 f(n) 与 f(n-1) 的过程看作是某两个矩阵相乘的结果,式子如下:


即:


所以我们只要不断地乘以上面式子中的第二个矩阵(也就是第二个矩阵的幂)就能够不断递推得到 f(n) 。但是这样于解题没有丝毫益处,反而使得常数变得更大(矩阵乘法的复杂度为立方级别)。所以我们就要利用矩阵乘法的一条重要性质:结合律。即矩阵 (A*B)*C = A*(B*C) ,证明过程可参见 2008 年国家集训队俞华程的论文。

有了结合律我们就可以用快速幂计算矩阵的幂,问题的复杂度顺利降到了 O(logn) 

#include<iostream>  
#include<memory.h>  
#include<cstdlib>  
#include<cstdio>  
#include<cmath>  
#include<cstring>  
#include<string>  
#include<cstdlib>  
#include<iomanip>  
#include<vector>  
#include<list>  
#include<map>  
#include<algorithm>  
typedef long long LL;  
const LL maxn=1000+10;  
const LL mod=1000000007;  
const int N=2;  
using namespace std;  
struct Matrix  
{  
    LL m[N][N];  
};  
Matrix A=  
{  
    1,1,  
    1,0  
};  
Matrix I=  
{  
    1,0,  
    0,1  
};  
Matrix multi(Matrix a,Matrix b)  
{  
    Matrix c;  
    for(int i=0;i<N;i++)  
    {  
        for(int j=0;j<N;j++)  
        {  
            c.m[i][j]=0;  
            for(int k=0;k<N;k++)  
                c.m[i][j]+=a.m[i][k]*b.m[k][j]%mod;  
  
            c.m[i][j]%=mod;  
        }  
    }  
    return c;  
}  
Matrix power(Matrix A,int k)  
{  
    Matrix ans=I,p=A;  
    while(k)  
    {  
        if(k&1)ans=multi(ans,p);
		p=multi(p,p);
        k>>=1;
         
    }  
    return ans;  
}  
int main()  
{  
    int n;  
    while(~scanf("%d",&n))  
    {  
        Matrix ans =power(A,n-1);  
        printf("%lld\n",ans.m[0][0]);//为什么是m[0][0]呢?这里花了 我几个小时才搞明白。看下面的说明.......
    }
    return 0;  
}

说明:最后求出来的,假设它结果为然后还有乘与才等于右边的   [f[n],f[n-1].


也就是发f【n】=m[0][0],矩阵的第0行第0列。


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值