1184: 帮我求算一下斐波那契数吧
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 221 Solved: 42
[ Submit][ Status][ Web Board]
Description
AYY小朋友对斐波那契数非常感兴趣,他知道f[1]=1,f[2]=1,并且从第三个斐波那契数开始f[n]=f[n-2]+f[n-1](n>=3),可是AYY小朋友只会计算前十个斐波那契数,因此他向你请教,让你帮忙计算第N个斐波那契数是多少,但是由于结果非常大,只需告诉他对1000000007取模的结果。
Input
Output
输出第n个斐波那契数的结果(对1000000007取模)
Sample Input
Sample Output
HINT
Source
解析:n很大求斐波那契数,按照正常的思路不是超时就是爆内存。这时候就有一个的更好的求的方法:矩阵乘法。
矩阵乘法,通常可以缩减内存很省时,但是难理解。
分析 :斐波那契数列的递推式为 f(n) = f(n-1)+f(n-2) ,直接循环求出 f(n) 的时间复杂度是 O(n) ,对于题目中的数据范围显然无法承受。很明显我们需要对数级别的算法。由于 f(n) = 1*f(n-1) + 1*f(n-2) 这样的形式很类似于矩阵的乘法,所以我们可以先把这个问题复杂化一下,将递推求解 f(n) 与 f(n-1) 的过程看作是某两个矩阵相乘的结果,式子如下:
即:
所以我们只要不断地乘以上面式子中的第二个矩阵(也就是第二个矩阵的幂)就能够不断递推得到 f(n) 。但是这样于解题没有丝毫益处,反而使得常数变得更大(矩阵乘法的复杂度为立方级别)。所以我们就要利用矩阵乘法的一条重要性质:结合律。即矩阵 (A*B)*C = A*(B*C) ,证明过程可参见 2008 年国家集训队俞华程的论文。
有了结合律我们就可以用快速幂计算矩阵的幂,问题的复杂度顺利降到了 O(logn) 。
#include<iostream>
#include<memory.h>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdlib>
#include<iomanip>
#include<vector>
#include<list>
#include<map>
#include<algorithm>
typedef long long LL;
const LL maxn=1000+10;
const LL mod=1000000007;
const int N=2;
using namespace std;
struct Matrix
{
LL m[N][N];
};
Matrix A=
{
1,1,
1,0
};
Matrix I=
{
1,0,
0,1
};
Matrix multi(Matrix a,Matrix b)
{
Matrix c;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
c.m[i][j]=0;
for(int k=0;k<N;k++)
c.m[i][j]+=a.m[i][k]*b.m[k][j]%mod;
c.m[i][j]%=mod;
}
}
return c;
}
Matrix power(Matrix A,int k)
{
Matrix ans=I,p=A;
while(k)
{
if(k&1)ans=multi(ans,p);
p=multi(p,p);
k>>=1;
}
return ans;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
Matrix ans =power(A,n-1);
printf("%lld\n",ans.m[0][0]);//为什么是m[0][0]呢?这里花了 我几个小时才搞明白。看下面的说明.......
}
return 0;
}
说明:最后求出来的,假设它结果为然后还有乘与才等于右边的 [f[n],f[n-1].
也就是发f【n】=m[0][0],矩阵的第0行第0列。