散度和旋度的物理意义是什么?

高等数学学的时间有点久远了,最近需要推倒一些公式,以前高数学的时候这公式那定理的都没说什么物理意义,现在接触的问题都是具有一定物理意义的, 感觉对不上,回来找找资料好好理解一下,在知乎上看到一些比较通俗易懂的答案,所以摘抄到这里给大家分享一下。

梯度的旋度问题

梯度的旋度不为零得话。。

我通俗地说一下矢量场那个吧。矢量场的旋度是用来描述场围绕中心旋转的程度的量,就是看一堆矢量绕中心转圈的部分多不多,是多少。而散度描述的是一堆矢量发散,也就是远离中心或者靠近中心(指向中心)的部分。在同一点上,分别被切向分量(绕圈)和径向分量(发散)来表示。这俩货相互垂直啊!所以乘起来就得零喽。物理意义举个例子,比如一坨质点在一个场中运动,对于速度矢量先旋度后散度的运算就是问你这一坨质点相对中心的角速度(也就是切向线速度)会让他在多大程度上远离中心。废话,当然是零了...

【电磁场】0.亥姆霍兹定理

亥姆霍兹定理是刻画电磁场唯一性的基本定理。

空间的一个矢量场由其散度、旋度和定解条件唯一确定。

更具体地说,一个矢量场可以表示为一个无旋的散度场和一个无散的旋度场的叠加。即

A=A_1+A_2。其中\nabla \times A_1=0,\nabla \cdot A_2=0。若记\nabla \cdot A_1=\rho,  \nabla \times A_2=J分别为矢量场的通量源和旋涡源,则矢量场A的源分布为

\nabla \cdot A=\nabla \cdot A_1=\rho\nabla \times A=\nabla \times A_2=J

如果再给定了定解条件,矢量场A就唯一地确定了。

亥姆霍兹定理是研究电磁场理论的主线。无论是静态场还是时变场,都是围绕着其散度、旋度和边界条件展开分析的。电磁场的Maxwell方程组也正是给出了电场E和磁场B的散度和旋度,结合具体问题的定解条件,理论上就可以求解所有的宏观电磁场问题。

\nabla \cdot E=\frac{1}{\varepsilon }\frac{\mathrm{d}q}{\mathrm{d}V}
\nabla \times E=-\frac{\partial B}{\partial t}
\nabla \cdot B=0
\nabla \times B=\mu \frac{\mathrm{d}I}{\mathrm{d}S}+\mu \varepsilon \frac{\partial E}{\partial t}

以下分别讨论场的散度,场的旋度和场的定解条件这三个概念。

1.场的散度

将矢量场垂直穿过某一曲面的量称为通量。综合考虑矢量场方向和曲面方向,以点积的形式进行定义。

\phi =\int_{S}^{}  \overrightarrow{A} \cdot \mathrm{d}\overrightarrow{S}

现在假设曲面是封闭的,那么曲面S就包围着一块空间区域V。容易理解,矢量场穿过封闭面S的通量应该是由场在区域V内的所有源产生(或吸收)的量的代数和。这个源就定义为场在某一点的散度,它表示场在空间一点的产生量(或吸收量)。

根据散度的定义,令体积V收缩至某一点M,可以得到散度在直角坐标中的计算公式

\lim_{\Delta V \rightarrow 0}{\frac{\Delta \phi }{\Delta V}}=\nabla \cdot  \overrightarrow{A}= \frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}

即散度等于场函数在各个方向上的分量在其所在方向的变化率之和。

高斯公式揭示了通量和通量源(散度)的关系:

\oiint_{S}^{}  \overrightarrow{A} \cdot \mathrm{d}\overrightarrow{S}=\iiint_V (\nabla \cdot  \overrightarrow{A}) \mathrm{d}V

2.场的旋度

将矢量场平行沿某一闭合曲线绕行的量称为环量。综合考虑矢量场方向和曲线方向,以点积的形式进行定义。

\Gamma =\oint_{l}^{}  \overrightarrow{A} \cdot \mathrm{d}\overrightarrow{l}

现在考虑这条曲线所围成的曲面。最简单的一种情况是,以该曲线为周界的曲面在通过该曲线的平面内(对于其他以该曲线为轮廓的面,其投影都是这个“最小”的面)。从而,在矢量场沿某一闭合曲线绕行的环量,是这条曲线所围成曲面内矢量场旋转强度的加和。即

\oint_{l}^{}  \overrightarrow{A} \cdot \mathrm{d}\overrightarrow{l}=\iint_S (\nabla \times  \overrightarrow{A}) \mathrm{d}\overrightarrow{S} (斯托克斯公式)

那么怎样计算旋转强度\nabla \times A呢?这需要讨论矢量场在各个空间方向上的旋转程度。首先,考虑矢量场A在x方向的旋转程度。由方向x表示的这个旋转程度实际上是yOz平面上的旋转程度,显然,这是由\frac{\partial A_y}{\partial z}\frac{\partial A_z}{\partial y}这两项决定的。考虑到\frac{\partial A_y}{\partial z}\frac{\partial A_z}{\partial y}对矢量场A在yOz平面上旋转程度的贡献方向相反,根据右手定则可以确定矢量场A在x方向的旋度分量为

(\nabla \times A)_x=\frac{\partial A_y}{\partial z}-\frac{\partial A_z}{\partial y}

同理可得

(\nabla \times A)_y=\frac{\partial A_z}{\partial x}-\frac{\partial A_x}{\partial z}
(\nabla \times A)_z=\frac{\partial A_x}{\partial y}-\frac{\partial A_y}{\partial x}

这可以用理论分析来说明。令曲线圈越来越小,收缩到一点M,得到旋度在直角坐标中的计算公式为

\lim_{S \rightarrow 0}{\frac{\Delta \Gamma}{\Delta S}}= \nabla \times \overrightarrow{A} =\left(\frac{\partial A_y}{\partial z}-\frac{\partial A_z}{\partial y},\frac{\partial A_z}{\partial x}-\frac{\partial A_x}{\partial z},\frac{\partial A_x}{\partial y}-\frac{\partial A_y}{\partial x}\right)

这与推理结果是一致的。

3.场的定解条件

通过场的散度和旋度求解场的表达式是一个积分过程。只有给出定解条件,才能确定积分过程中产生的任意积分常数。定解条件分为空间上的边界条件和时间上的初始条件。

位函数

一个矢量的位函数是这样的一种函数,它的变化率(可以是梯度、旋度、散度)等于该矢量。例如,电位函数\varphi满足

E=-\nabla \varphi 或 \varphi (x)=\int _{x}^{\infty }E\cdot \mathrm{d}l

动态位函数A满足

B=\nabla \times A

位函数相当于是矢量函数的积分。由于提前进行了一步积分,因此它在求解某些问题时比直接求解场量要简单一些。同时,位函数也能用于描述场在边界上的定解条件。

场的定解条件有三类,分别是在边界(包括时间边界和空间边界)上的位函数值,在边界上位函数的法向导数,以及这两者的线性组合。

当空间中只有一种有限分布的场时,定解条件就是边界条件和初始条件。若场的分布区域及于无限远,则需要给出无穷远处的边界条件(特别地,当场源分布有限时,有所谓的自然边界条件,即位函数在无穷远处为有限值)。若空间中存在多种场,则需要给出不同场边界上的的衔接条件。

给定了这些条件,就可建立定解问题。求解这个定解问题,电磁场的分布问题从理论上来说就得到了解决。而这一切的依据就是亥姆霍兹定理。

散度和旋度常用关系式

更多信息请参见

http://boson4.phys.tku.edu.tw/fundamentals_of_math_phys/unit-03_Vector__grad-div-curl_n_coord-sys.html

最后,要说的是知乎是个好东西,好多学术性比较抽象的东西,知乎上有通俗易懂的解释。强烈推荐!!!
作者:Grit
链接:https://www.zhihu.com/question/29970414/answer/46292024
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

<think>好的,我现在需要回答用户关于球面坐标系中微分意义的问题,包括数学定义物理应用。首先,我得理清楚球面坐标系的基本概念,以及微分在其中的表现形式。球面坐标系由径向距离r、极角θ方位角φ构成,这点我记得没错。接下来,微分在这里可能指的是线元、面积元、体积元,或者是梯旋度等微分算子。 数学定义方面,线元在球坐标中的表达式应该是三个方向上的微分平方。但具体怎么推导呢?可能需要将直角坐标转换为球坐标,然后求导得到各方向的基向量,再计算线元。比如,直角坐标中的点(x,y,z)转换为球坐标的(r,θ,φ),然后对r、θ、φ分别求偏导,得到各个方向的微小位移分量。这样线元的平方就是dr² + (r dθ)² + (r sinθ dφ)²,对吗? 然后是体积元,应该是三个方向微分相乘再乘以雅可比行列式的结果,也就是r² sinθ dr dθ dφ。这个我记得是积分时常用的体积元素,需要确认雅可比行列式的计算是否正确,是否在转换坐标时需要考虑缩放因子。 关于微分算子,梯旋度在球坐标系中的表达式可能与直角坐标系不同,因为基向量是随着位置变化的。梯应该是各个分量对各自坐标的偏导,再除以对应的量因子。比如梯在r方向的分量是∂/∂r,θ方向是(1/r)∂/∂θ,φ方向是(1/(r sinθ))∂/∂φ。这样组合起来就是梯的表达式。 旋度的话,需要用到向量场的分量基向量的变化。的计算可能涉及对各个方向分量的导数,并考虑坐标系的缩放因子。比如的公式可能包含对r²分量、sinθ分量的处理。而旋度则需要用行列式的方式展开,考虑各个方向的偏导分量,同样需要调整量因子。 物理应用方面,电磁学流体力学中常用球坐标系。比如点电荷的电场分布具有球对称性,用球坐标处理更方便。麦克斯韦方程组中的高斯定律,计算电场时就需要球坐标下的表达式,这可能会引用到引用[2]中提到的旋度的内容。另外,引力场中的势能函数也可能用球坐标的拉普拉斯算子来求解泊松方程。 量子力学中的氢原子问题,薛定谔方程在球坐标下分离变量,得到径向部分角向部分,这时候体积元用于归一化波函数。角动量算符的表达式也涉及球坐标中的微分算子,比如L²算符与θφ的偏导有关。 广义相对论中,时空的量可能用球坐标形式表达,比如史瓦西解,微分几何中的黎曼几何可能在这里应用,这可能对应引用[1]提到的黎曼几何的影响。需要确认引用内容是否相关,比如引用[1]提到黎曼几何在物理中的应用,可以关联到广义相对论中的球坐标系应用。 可能还需要提到坐标变换的实际应用,比如引用[3]中关于不同坐标系转换的参数问题,但不确定是否直接相关,但用户的问题可能更关注数学物理应用,所以可能不需要深入讨论坐标转换参数的问题,但如果有涉及不同基准的转换,可以简要提及。 生成的相关问题需要考虑用户可能的后续疑问,例如如何推导球坐标中的微分算子,或者具体的物理实例,比如如何用球坐标求解拉普拉斯方程,或者与其他坐标系的比较等。 需要确保数学表达式的格式正确,行内公式用$...$,独立公式用$$...$$,并正确换行。例如,线元公式应该用独立公式,而梯等可以用行内或独立公式,根据长决定。 检查是否有引用需要添加,比如在讨论时引用[2],在提到黎曼几何时引用[1],而引用[3]可能不直接相关,但如果有坐标转换的部分可以提及。 总结步骤: 1. 球面坐标系的数学定义,包括坐标参数。 2. 微分元素(线元、面积元、体积元)的推导表达式。 3. 微分算子(梯旋度)在球坐标系中的形式。 4. 物理应用举例,如电磁学、量子力学、广义相对论。 5. 引用相关文献,确保正确标注。 6. 生成相关问题,引导进一步学习。</think>### 球面坐标系中的微分意义 #### 1. 数学定义 在球面坐标系 $(r, \theta, \phi)$ 中,微分运算通过以下几何代数形式体现: - **线元**(弧长微分): $$ ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta \, d\phi^2 $$ 表示空间中微小位移的平方,由径向、极角方向方位角方向的位移分量组成。 - **体积元**: $$ dV = r^2 \sin\theta \, dr \, d\theta \, d\phi $$ 由雅可比行列式引入坐标变换的缩放因子 $r^2 \sin\theta$,用于积分运算[^2]。 - **微分算子**: - **梯**: $$ \nabla f = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_\theta + \frac{1}{r \sin\theta} \frac{\partial f}{\partial \phi} \mathbf{e}_\phi $$ - ****: $$ \nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r}(r^2 F_r) + \frac{1}{r \sin\theta} \frac{\partial}{\partial \theta}(\sin\theta F_\theta) + \frac{1}{r \sin\theta} \frac{\partial F_\phi}{\partial \phi} $$ - **旋度**: $$ \nabla \times \mathbf{F} = \frac{1}{r \sin\theta} \left[ \frac{\partial}{\partial \theta}(F_\phi \sin\theta) - \frac{\partial F_\theta}{\partial \phi} \right] \mathbf{e}_r + \cdots $$ (完整表达式需展开行列式计算) #### 2. 物理应用 - **电磁学**: 点电荷的电场分布具有球对称性,使用球坐标系计算电场强 $E(r)$ 或电势 $\phi(r)$ 时,算子可直接简化计算。例如,高斯定律的微分形式为: $$ \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} $$ - **量子力学**: 氢原子波函数的求解依赖球坐标系下的拉普拉斯算子: $$ \nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial \psi}{\partial r}\right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta}\left(\sin\theta \frac{\partial \psi}{\partial \theta}\right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 \psi}{\partial \phi^2} $$ - **广义相对论**: 史瓦西黑洞的时空规在球坐标系中表示为: $$ ds^2 = -\left(1 - \frac{2GM}{r}\right) dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1} dr^2 + r^2 d\Omega^2 $$ 其中 $d\Omega^2 = d\theta^2 + \sin^2\theta \, d\phi^2$,体现了微分几何的核心思想[^1]。 ####
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值