现在有一个由n个字符组成的长度为m的字符串,可以对其通过增加字符或者删除字符来使其变成回文字符串,而增加或者删除字符都有一个花费,求解使该字符串变成回文所进行操作的最小花费.
首先来说删除和添加其实是一个操作 对于字符串来说 无论是添加还是删除都不影响接下来形成回文的操作
那么cost就是添加和删除里面较小的一个
设dp[i][j]为从i 到j 的代价,状态转移就是dp[i][j]=min(dp[i+1][j]+cost[i],dp[i][j-1]+cost[j])
当str[i]==str[j]的时候dp[i][j]=dp[i+1][j-1]
#include<stdio.h>
#include<string.h>
#define min(x,y) (x)<(y)?(x):(y)
int dp[2005][2005];
int cost[30];
int main()
{
char str[2005];
int n, m, i, j;
scanf("%d %d %s",&n,&m,str);
char c; int add,del;
for(i=0;i<n;i++)
{
scanf(" %c %d %d",&c,&add,&del);
cost[c-'a'] = min(add, del);
}
memset(dp,0,sizeof(dp));
for(j=1;j<m;j++)
for(i=j-1;i>=0;i--)
{
dp[i][j] = min(dp[i+1][j]+cost[str[i]-'a'], dp[i][j-1]+cost[str[j]-'a']);
if(str[i] == str[j])
dp[i][j] = min(dp[i][j], dp[i+1][j-1]);
}
printf("%d\n",dp[0][m-1]);
return 0;
}