X问题
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3641 Accepted Submission(s): 1182
Problem Description
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。
Output
对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
Sample Input
3 10 3 1 2 3 0 1 2 100 7 3 4 5 6 7 8 9 1 2 3 4 5 6 7 10000 10 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
Sample Output
1 0 3
Author
lwg
Source
Recommend
ac代码
#include<stdio.h>
#include<string.h>
__int64 n;
int m;
__int64 a[15],b[15];
__int64 e_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
__int64 d;
if(b==0)
{
x=1;
y=0;
return a;
}
d=e_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
__int64 remainder(__int64 a[],__int64 b[],int m)
{
int i,w=0;
__int64 n1=a[0],b1=b[0],x,y;
for(i=1;i<m;i++)
{
__int64 n2=a[i],b2=b[i];
__int64 bb=b2-b1;
__int64 d=e_gcd(n1,n2,x,y);
if(bb%d)
{
w=1;
break;
}
__int64 k=bb/d*x;
__int64 t=n2/d;
k=(k%t+t)%t;
b1=b1+n1*k;
n1=n1/d*n2;
}
if(w)
return 0;
if(b1==0)//题目要求是正整数解
b1=n1;
if(b1>n)
return 0;
return (n-b1)/n1+1;//b1、b1+n1、b1+n1*2……
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i;
scanf("%I64d%d",&n,&m);
for(i=0;i<m;i++)
scanf("%I64d",&a[i]);
for(i=0;i<m;i++)
scanf("%I64d",&b[i]);
printf("%I64d\n",remainder(a,b,m));
}
}