docker 容器内安装curl

1 进入容器

docker exec -it CONTAINER ID /bin/bash

2 安装wget

apt-get/yum install wget

3 安装curl

3.1 下载压缩包并解压

3.2配置

./configure --prefix=/usr/local/curl

3.3 编译和安装

3.3.1 安装make 工具

apt-get install gcc automake autoconf libtool make

3.3.2 编译和安装

make && make install

3.4 配置环境变量

PATH=$PATH:/usr/local/curl/bin

### 如何在Docker容器安装配置PyTorch环境 #### 创建Dockerfile 为了确保环境中所有依赖项都得到妥善处理,建议通过编写 `Dockerfile` 来定义 PyTorch 的 Docker 镜像。这使得整个过程可重复且易于分享给其他开发者。 ```dockerfile FROM nvidia/cuda:11.6.2-base-ubuntu20.04 # 安装必要的软件包 RUN apt-get update && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ python3-pip \ python3-dev \ git \ cmake \ build-essential \ libjpeg-dev \ wget \ ca-certificates \ curl \ vim \ nano \ openssh-server \ locales \ tzdata \ && rm -rf /var/lib/apt/lists/* # 设置Python虚拟环境 WORKDIR /workspace ENV PATH="/env/bin:$PATH" RUN pip3 install --upgrade pip setuptools wheel # 安装PyTorch及相关库 RUN pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116 # 复制项目文件至工作区 COPY . . CMD ["bash"] ``` 此脚本首先选择了带有 CUDA 支持的基础 Ubuntu 映像作为起点[^1]。接着更新了系统的软件包列表,并安装了一些基本工具和 Python 开发所需的组件。之后设置了一个名为 `/workspace` 的工作目录用于放置应用程序代码和其他资源文件。最后一步则是安装特定版本的 PyTorch 和其配套的数据加载器(如 TorchVision),这里指定了适用于 NVIDIA GPU 加速计算的 cuDNN 版本[^2]。 #### 构建与运行Docker镜像 一旦完成了上述 `Dockerfile` 文件的编辑保存,在终端执行如下命令即可开始构建新的 Docker 镜像: ```shell docker build -t custom-pytorch-env . ``` 这条指令会读取当前路径下的 `Dockerfile` 并按照其中指示逐步组装成一个新的 Docker 镜像标签为 `custom-pytorch-env`[^3]。 当构建完成后,可以通过下面的方式启动新创建好的容器实例: ```shell docker run -it --rm --gpus all custom-pytorch-env bash ``` 这里的 `-it` 参数允许交互模式下操作;`--rm` 表示退出后自动删除临时产生的容器数据;而 `--gpus all` 则授予容器访问主机上所有的GPU设备权限以便充分利用硬件加速能力[^4]。 #### 进入已有的Docker容器 如果已经有一个正在运行中的容器想要连接进去修改某些东西或者调试程序的话,则可以采用以下方法之一: * 使用 `docker exec` 命令附加到现有进程中去而不终止它; ```shell docker exec -it container_id_or_name bash ``` * 或者直接附着于指定ID或名称对应的进程之上 ```shell docker attach container_id_or_name ``` 这两种方式都可以让用户获得一个 shell 提示符从而进一步探索内部状态或是调整参数设定等。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值