数据结构和算法(十二)递归-汉若塔游戏

本文介绍了汉诺塔游戏的起源和玩法,并详细分析了使用递归解决汉诺塔问题的思路,包括移动次数的规律(2^n - 1)。通过JAVA代码展示了汉诺塔游戏的实现,最后分享了执行结果。

1. 数据结构和算法(十二)递归-汉若塔游戏

1.1 汉诺塔

  汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。在线游戏地址:http://ertong.973.com/p114895

在这里插入图片描述

汉诺塔游戏,玩法如下:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上

1.2 思路分析

n是盘子的数量
  • n == 1
    • 第1次 1号盘 A---->C sum = 1 次
  • n == 2
    • 第1次 1号盘 A---->B
    • 第2次 2号盘 A---->C
    • 第3次 1号盘 B---->C sum = 3 次
  • n == 3
    • 第1次 1号盘 A—->C
    • 第2次 2号盘 A—->B
    • 第3次 1号盘 C—->B
    • 第4次 3号盘 A—->C
    • 第5次 1号盘 B—->A
    • 第6次 2号盘 B—->C
    • 第7次 1号盘 A—->C sum = 7 次
  • n == 4
    • 第1次 1号盘 A–>B
    • 第2次 2号盘 A–>C
    • 第3次 1号盘 B–>C
    • 第4次 3号盘 A–>B
    • 第5次 1号盘 C–>A
    • 第6次 2号盘 C–>B
    • 第7次 1号盘 A–>B
    • 第8次 4号盘 A–>C
    • 第9次 1号盘 B–>C
    • 第10次 2号盘 B–>A
    • 第11次 1号盘 C–>A
    • 第12次 3号盘 B–>C
    • 第13次 1号盘 A–>B
    • 第14次 2号盘 A–>C
    • 第15次 1号盘 B–>C sum = 15 次
算法分析
  • 总结规律
    1个圆盘的次数 2的1次方减1
    2个圆盘的次数 2的2次方减1
    3个圆盘的次数 2的3次方减1
    4个圆盘的次数 2的4次方减1

    n个圆盘的次数 2的n次方减1<

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值