1. 数据结构和算法(十二)递归-汉若塔游戏
1.1 汉诺塔
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。在线游戏地址:http://ertong.973.com/p114895

汉诺塔游戏,玩法如下:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
1.2 思路分析
n是盘子的数量
- n == 1
- 第1次 1号盘 A---->C sum = 1 次
- n == 2
- 第1次 1号盘 A---->B
- 第2次 2号盘 A---->C
- 第3次 1号盘 B---->C sum = 3 次
- n == 3
- 第1次 1号盘 A—->C
- 第2次 2号盘 A—->B
- 第3次 1号盘 C—->B
- 第4次 3号盘 A—->C
- 第5次 1号盘 B—->A
- 第6次 2号盘 B—->C
- 第7次 1号盘 A—->C sum = 7 次
- n == 4
- 第1次 1号盘 A–>B
- 第2次 2号盘 A–>C
- 第3次 1号盘 B–>C
- 第4次 3号盘 A–>B
- 第5次 1号盘 C–>A
- 第6次 2号盘 C–>B
- 第7次 1号盘 A–>B
- 第8次 4号盘 A–>C
- 第9次 1号盘 B–>C
- 第10次 2号盘 B–>A
- 第11次 1号盘 C–>A
- 第12次 3号盘 B–>C
- 第13次 1号盘 A–>B
- 第14次 2号盘 A–>C
- 第15次 1号盘 B–>C sum = 15 次
算法分析
-
总结规律
1个圆盘的次数 2的1次方减1
2个圆盘的次数 2的2次方减1
3个圆盘的次数 2的3次方减1
4个圆盘的次数 2的4次方减1
…
n个圆盘的次数 2的n次方减1<

本文介绍了汉诺塔游戏的起源和玩法,并详细分析了使用递归解决汉诺塔问题的思路,包括移动次数的规律(2^n - 1)。通过JAVA代码展示了汉诺塔游戏的实现,最后分享了执行结果。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



