[LeetCode] Maximum Subarray

题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

解答:

class Solution {
public:
    int maxSubArray(int A[], int n) {
         int sum = A[0];
         int max = A[0];
         for(int i = 1; i < n; i++) {
             sum = sum + A[i];
             if(sum < A[i]) {
                 sum = A[i];
             }
             if(sum > max) {
                 max = sum;
             }
         }
         return max;
    }
};

思路:

动态规划的思想,max和sum首先初始化为数组第一个数,然后从数组第二个数遍历整个数组。

sum记录某一子串的和,当遍历到某一位时,如果加上这一位的数,sum变得比这一位的数字还小,那么之前的最大和子串完全没有必要加上当前这一位,所以sum赋值为当前这一位,其实意味着从这一位开始重新计算sum,即把这一位当成是子串的起点。

sum更新(加上当前位)后,需要与max比较,如果比max大,则更新max的值。

由此,便可以得到最大和子串的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值