java利用回溯算法解决八皇后问题

数据结构之八皇后

这是一年前的存货,再不发就发霉了

package cn.ycl.dataStructures.recursion;

//递归-八皇后问题(回溯算法)

/**
 * 八皇后问题算法思路分析 1)第一个皇后先放第一行第一列
 * 2)第二个皇后放在第二行第一列,然后判断是否OK,如果不OK,继续放在第二列,第三列,依次把所有列放完,找到一个合适的
 * 3)继续第三个皇后,还是第一列,第二列,第三列。。。。直达第八个皇后也能放在一个不冲突的位置,算是找到一个正确解
 * 4)当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到
 * 5)然后回头继续第一个皇后放第二列,后面继续循环执行1,2,3的步骤
 * <p>
 * 说明:理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过一个一维数组即可解决问题
 */

public class Queen8 {
    // 定义多少个皇后
    int queen = 8;
    int count = 0;
    // 定义一维数组,用于保存八皇后的位置
    int[] array = new int[queen];

    public static void main(String[] args) {
        Queen8 queen8 = new Queen8();
        queen8.check(0);
        System.out.printf("八皇后一共有%d种放法.", queen8.count);
    }
    //定义一个将数组输出的方法
    public void print() {
        for (int value : array) {
            System.out.print(value + " ");
        }
        System.out.println();
    }

    //编写一个方法,放置第n个皇后
    //特别注意;check是每一次递归是,进入到check中都有for( int i = 0; i< array.length ;i ++),因此会有回溯
    private void check(int n) {
        if (n == queen) {//  此时n对于8,其实8个皇后就已经放好
            print();
            count++;
            return;
        }
    //依次放入皇后,并判断是否冲突
    for (int i = 0; i < queen; i++) {
    //先把当前这个皇后放到该行的第一列
        array[n] = i;
        if (judge(n)) {//如果不冲突
    //接着放第n+1个,开始递归
         check(n + 1);
            }//如果冲突,他就会继续执行array[n]=i;由于i++,即将第n个皇后放在本行的后一个位置
        }
    }

    //定义一个判断是否冲突的方法,查看我们放置第n个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
    private boolean judge(int n) {
        for (int i = 0; i < n; i++) {
    // 仔细想一下,两个条件分别判断了,不能在同一列,以及不能在同一斜线
    // 其中Math.abs()方法是用于取得绝对值,学到了,学到了
            if (array[i] == array[n] || Math.abs(array[n] - array[i]) == Math.abs(n - i)) {
                return false;
            }
        }
        return true;
    }

}

结果如图所示(一共92种,只截取了一部分结果,屏幕放不下。。。
其实有一些反过来是一样的,但是他还是算作一种新的摆法。):
在这里插入图片描述
我是“道祖且长”,一个在互联网苟且偷生的Java程序员

回溯算法是一种通过试探法来寻找问题所有解的算法。在解决八皇后问题时,回溯算法通过逐行放置皇后并检查是否满足安全条件来探索可能的解决方案。当发现当前放置导致冲突时,算法会回退到上一步,并尝试新的位置。这种过程不断重复,直到找到所有可能的解或者没有解为止。接下来,我们将通过具体的代码实现来进一步了解这个算法。 参考资源链接:[回溯算法详解:解决八皇后问题](https://wenku.csdn.net/doc/6fqfvg5bpq) 以下是使用回溯算法解决八皇后问题Java代码示例: ```java public class EightQueens { int[] queens; // 存储每行皇后的位置 int count = 0; // 解法的计数器 public EightQueens(int n) { queens = new int[n]; } // 检查放置皇后的位置是否安全 boolean isSafe(int row, int col) { for (int i = 0; i < row; i++) { // 检查垂直方向和两个对角线方向是否有冲突 if (queens[i] == col || Math.abs(queens[i] - col) == Math.abs(i - row)) { return false; } } return true; } // 递归函数来放置皇后 void solve(int row) { int n = queens.length; if (row == n) { // 所有皇后都放置好了,打印出一种解 count++; return; } for (int i = 0; i < n; i++) { if (isSafe(row, i)) { queens[row] = i; // 放置皇后 solve(row + 1); // 递归放置下一行的皇后 } } } // 开始求解八皇后问题 public void startSolving() { solve(0); System.out.println( 参考资源链接:[回溯算法详解:解决八皇后问题](https://wenku.csdn.net/doc/6fqfvg5bpq)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三七有脾气

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值