These vector norms treat an matrix as a vector of size mn , and use one of the familiar vector norms.
For example, using the p -norm for vectors, we get:
This is a different norm from the induced p -norm (see above) and the Schatten p -norm (see below), but the notation is the same.
The special case p = 2 is the Frobenius norm, and p = ∞ yields the maximum norm.
[edit ] Frobenius norm
For p = 2, this is called the Frobenius norm or the Hilbert–Schmidt norm , though the latter term is often reserved for operators on Hilbert space . This norm can be defined in various ways:
where A * denotes the conjugate transpose of A , σi are the singular values of A , and the trace function is used. The Frobenius norm is very similar to the Euclidean norm on K n and comes from an inner product on the space of all matrices.
The Frobenius norm is submultiplicative and is very useful for numerical linear algebra . This norm is often easier to compute than induced norms.