密码学及相关理论【转】

本文介绍了密码学中的基础概念,包括素数的性质及其在密码学中的作用,群论中的加法群、乘法群和循环群,以及模运算的应用。重点讲解了欧几里得算法、Eratosthenes筛选法、安全素数、Diffie-Hellman协议中的子群选择。同时,提到了公钥密码学如RSA的基于大数因式分解的困难性,以及密钥长度的安全性考虑。内容涵盖密码学的历史、理论和实际应用。
摘要由CSDN通过智能技术生成

[密码学实践][现代密码学理论与实践][刘氏高强度公开加密算法设计原理与装置][应用密码学:协议算法与c源程序][密码编码学与网络安全:原理与实践(第二版)][BigNum Math:加密多精度算法的理论与实现]之学习笔记
1.任意大于1而又不是素数的整数称为合数,每个合数都可唯一分解出素数因子,素数也称为质数。
2.如果生成所以小于100万德素数,也要使用2000年前的一个算法,由阿基米德的朋友Eratosthenes提出的Eratosthenes筛选法
3.欧几里得:存在无穷多个素数,并给出完美证明
4.素数在密码学中之所以如此有用,主要原因可以进行素数模运算,即对于素数p,只需使用0,1,...,p-1这些数
5.任何整数取模p运算之后总在0,1,...,p-1之内,即使原来的指数是负的,对于-1,结果为p-1


6.集合G和运算*称为群(G,*):封闭律,结合律,单位元律,可逆律。如果G中元素个数是有限的,称为有限群。如果a*b=b*a,称G为阿贝尔群,或交换群。如果存在一个元素a属于G,对于任一b属于G,存在一整数i,使得a^i=b,则G为循环群,a为生成元或群的单位元的本原根
7.整数集Z在加法+下构成群。对于任意n>=1,整数模n的集合构成一个包含n个元素的有限加法群,称为Zn(Zn,+(mod n)),Zn是正式和标准的写法Z/nZ的简化表示。Zn中包含所有与n互素的元素的子集构成的一个有限乘法群,乘法指模n乘法,e=1,对群中任一元素a,逆元可用扩展的欧几里得算法求得,用Zn*表示这个群
8.环:一个同时满足两种运算:(加法)+和(乘法)*的集合,满足以下性质,即为环R:
a.R在加法+下是交换群,单位元为0(零元)
b.R在乘法*下满足封闭律、结合律、单位元律,乘法单位元为1(单位元),1不等于0
c.对于任一a,b属于R,a*b=b*a
d.对于任一a,b,c属于R,a*(b+c)=a*b+a*c
(如果乘法满足交换律,即c,R即为交换环)
9.域:如果一个环中的非零元在乘法运算下构成群,该环即为域。若p为素数,在模p加法和模p乘法运算下,Zp是一个域,Zp的非零元(Zp*)构成一个乘法群。若p为素数,有限域Zp记为Fp
10.数学家称模素数p的数的集合为有限域,称之为mod p域,对于mod p的计算有如下提示:所以结果总在0,1,...,p-1内,有限域包括两个部分:加法群和乘法群Zp*


11.计算a/b(mod p)或者c*b=a(mod p)中的c,需用2000多年前的欧几里得计算GCD的算法和扩展的欧几里得算法
12.对于公钥密码学来说,我们需要产生的素数有2000~4000比特长
13.快速确定一个整数是否为素数一直是一个值得讨论的问题,三种方法:试除法,Fermat测试,Miller-Rabin测试为可能性的素数测试方法,这些算法如果说某个整数是可分解的,则一定是可分解的,如果称某个整数是素数,基于的概率判定,不一定正确。虽然缺乏完全的确定性,但是这些方法检验在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值