导数的几何意义

图1

设曲线 y=f(x) 在点 P0 处的坐标为 (x0,y0) ,当自变量由 x0 变到 x0+Δx 时,点 P0 沿曲线移动到点 P(x0+Δx,y0+Δy) ,直线 P0P 是曲线 y=f(x) 的割线,其倾角记为 φ

由上图可得:

tanφ=ΔyΔx

所以, ΔyΔx 的几何意义就表示割线 P0P 的斜率。

Δx0 时, P 点沿着曲线趋向于P点,这时割线 P0P 将绕着 P0 点转动,它的极限位置就是 TP0 ,其也即为曲线在点 P0 处的切线,它的倾角记作 α 。既然割线趋近于切线,所以割线的斜率必然趋近于切线的斜率,即

f(x0)=limΔx0ΔyΔx=tanα

函数 f=y(x) x0 下的导数 f(x0) 的几何意义,就是曲线在对应点 (x0,y0) 处的切线的斜率。


曲线在点 (x0,y0) 的切线方程

  1. f(x0) 存在,则为 yf(x0)=f(x0)(xx0)
  2. f(x) 在点 x0 处连续,且 f(x0)= ,则为 x=x0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值