设曲线 y=f(x) 在点 P0 处的坐标为 (x0,y0) ,当自变量由 x0 变到 x0+Δx 时,点 P0 沿曲线移动到点 P(x0+Δx,y0+Δy) ,直线 P0P 是曲线 y=f(x) 的割线,其倾角记为 φ 。
由上图可得:
tanφ=ΔyΔx
所以, ΔyΔx 的几何意义就表示割线 P0P 的斜率。
当
Δx→0
时,
P
点沿着曲线趋向于
f′(x0)=limΔx→0ΔyΔx=tanα
函数 f=y(x) 在 x0 下的导数 f′(x0) 的几何意义,就是曲线在对应点 (x0,y0) 处的切线的斜率。
曲线在点 (x0,y0) 的切线方程
- f′(x0) 存在,则为 y−f(x0)=f′(x0)(x−x0)
- f(x) 在点 x0 处连续,且 f′(x0)=∞ ,则为 x=x0