http://acm.hdu.edu.cn/showproblem.php?pid=2521
反素数
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4833 Accepted Submission(s): 2842
Problem Description
反素数就是满足对于任意i(0<i<x),都有g(i)<g(x),(g(x)是x的因子个数),则x为一个反素数。现在给你一个整数区间[a,b],请你求出该区间的x使g(x)最大。
Input
第一行输入n,接下来n行测试数据
输入包括a,b, 1<=a<=b<=5000,表示闭区间[a,b].
输入包括a,b, 1<=a<=b<=5000,表示闭区间[a,b].
Output
输出为一个整数,为该区间因子最多的数.如果满足条件有多个,则输出其中最小的数.
Sample Input
3 2 3 1 10 47 359
Sample Output
2 6 240Hint2的因子为:1 2 10的因子为:1 2 5 10#include <iostream> #include <string.h> using namespace std; int prime[1000],f[5005]; bool isprime[5005]; int k; void get_prime() { fill(isprime,isprime+5000,true); long long i,j; isprime[1]=false; k=0; for( i=2;i<=5000;i++){ if(isprime[i]){ prime[k++]=i; for(j=i*i;j<=5000;j+=i) isprime[j]=false; } } } int g(int n) { int a[1000]; memset(a,0,sizeof(a)); int o=0; for(int i=0;i<=k&&i*i<n;i++) { while(n%prime[i]==0) { n=n/prime[i]; a[o]++; } o++; } if(n>1) a[o++]=1; int ans=1; for(int i=0;i<o;i++) { ans*=(a[i]+1); } return ans; } void get_f() { f[1]=1; for(int i=2;i<=5000;i++) f[i]=g(i); } int main() { int a,b,t,maxans,ans; cin>>t; get_prime(); get_f(); while(t--) { maxans=-3; cin>>a>>b; ans=1; for(int i=a;i<=b;i++) { if(maxans<f[i]) { maxans=f[i]; ans=i; } } cout<<ans<<endl; } // cout << "Hello world!" << endl; return 0;
}