传送门
题意:给一颗n个节点的K叉树,问所有节点的大小(就是孩子个数)亦或值值多少。
思路:根据n ,k,设有i+1层,可以知道最底层的节点个数为m=n-(k^0 - k^1 - k^2 -…..-k^(i-1) ),那么最后一层第m个点是特殊点,我们找一条0到该点的路径,这条路径很关键,
看12–5–2–0这条路径,从底层看,12号点左侧的点孩子个数都是1,12号点孩子个数为1,12右侧没有点,然后向上走,5号左侧所有点孩子个数都为3,右侧所有点孩子个数都为1,5号点孩子个数为3,然后再向上走,,2号左侧所有点孩子个数为7,右侧没有孩子,通过这些启发,大概明白了,这条路径上左侧右侧的点都是满的,只有改路径上的点孩子不满,那么我们可以定义3个值L,R,M,L表示路径左侧同层子树的大小,R表示右侧同层子树大小,因为L和R都是满的子树,所以L,R 是有规律迭代的,L=L*K+1,R=R*K+1,显然初始时L=1,R=0,那么M等于当前点的所有左兄弟大小加上所有有兄弟大小,加上自身值,再加1。
详细见代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
const LL N=1e18+5;
LL cnt[70];
LL pw[70];
int main()
{
int T;
LL n,k,m;
LL L,R,M,ans;
int deep;
cin>>T;
while(T--)
{
scanf("%lld%lld",&n,&k);
if(k == 1)///特判k=1
{
if(n%4 == 0) ans = n;
else if(n%4 == 1) ans = 1;
else if(n%4 == 2) ans = n+1;
else if(n%4 == 3) ans = 0;
printf("%lld\n",ans);
continue;
}
LL tmp=1;
m=n-1;
pw[0]=1;
for(int i=1; i<70; i++)
{
tmp=tmp*k;
pw[i]=tmp;/// k的i次幂保存起来用
if(m<tmp)
{
deep=i;
break;
}
m-=tmp;
}
cnt[deep]=m;
if(m==0)///特判,如果最后一层是满的,
{
deep--;
cnt[deep]=pw[deep];
m=cnt[deep];
}
for(int i=deep-1; i>=0; i--)
{
cnt[i]=(m+k-1)/k;
m=cnt[i];///计算路径上的点在第i层是从左到右第几个点
}
L=1;
M=1;
R=0;
ans=0;
LL pos;
for(int i=deep; i>=0; i--)
{
if((cnt[i]-1)&1)///该点左侧点个数是奇数有效
ans^=L;
if((pw[i]-cnt[i])&1)///一层一共k^i 个点,减去cnt[i] 个就是右侧的点的个数
ans^=R;
ans^=M;
pos=(cnt[i]-1)%k;///pos表示左边有几个兄弟,
M=pos*L+M+1+(k-pos-1)*R;///k-pos-1,表示该点右侧兄弟个数
L=L*k+1;
R=R*k+1;
}
printf("%lld\n",ans);
}
return 0;
}