hdu6141 最大树形图+权值编码

传送门
大佬写的太好了,拿来分享,希望大佬不要生气
题意:给定一个有向图,求以1为根节点的最大树形图是多少并且输出n号节点的父亲节点(父亲节点字典序需要最小)。n是节点数目,m是边的数目。

分析:首先,这里求的是最大树形图,我们可以将所有边的权值乘以-1,然后根据最小树形图算法,求出最小树形图的权值和,再乘回-1就是该有向图的最大树形图权值。但是这样是求不出n号节点的最小字典序父亲节点的,朱刘算法中会将节点序号打乱,也就是我们会丢失节点序号,那这里怎么办呢?这里就用到了权值编码。我们可以思考,既然朱刘算法会将节点序号改变,那么什么是不变的呢?那肯定就是进入n号节点的最小边,如果我们将n号节点的父亲节点信息存到边中,然后再还原回来,不就可以了?这就是权值编码的神奇之处了。这里的操作是,我们将所有的权值都乘以-n,为什么是乘以-n,而不是乘以别的数呢?这里做个记号#1,先不讨论。然后当存在某条边(u,v,w),其中v是n号节点,那么我就将这条边的权值w+=u(这里的w已经进行过乘以-n的操作了。),那么这里问题来了,我这样w+=u,会不会改变节点到达n点权值的相对大小呢?正常情况下是会的,但是这里我们可以提前避开这个问题,这里做个记号#2,先不讨论。然后,当我们根据以上操作处理完所有的权值以及到达n的权值之后,就可以直接跑最小树形图。当我们做完最小树形图之后,会得到一个负数ans1,这个ans1=-n*wi+u,其中wi表示选中边初始的权值和,u表示进入n的父亲节点(神奇吧?),那么此时我们经过乘以ans1*-1,会得到ans2=n*wi-u,这时,我们可以很明显的发现,我们所求的最大树形图权值就是所有wi的和,n的最小字典序父亲节点就是u。到了这一步,我们的工作就是处理ans2。对于最大树形图的权值,我们不能直接(ans2=n*wi-u)/n,这里-u的做操作会使最终结果少1,因此,我们这样操作(ans2+n-1)/n=(n*wi-u+n-1)/n,这里0<-u+n-1

#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

using namespace std;
typedef long long LL;
const int MAXN = 1e4+5;
const double PI = acos(-1);
const double eps = 1e-8;
const int MOD = 1e9+7;
const int INF=0x3f3f3f3f;
struct node
{
    int u,v,next,w;
} edge[MAXN*10];
int head[MAXN],tot;
void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
    edge[tot].u=u;
    edge[tot].v=v;
    edge[tot].w=w;
    edge[tot].next=head[u];
    head[u]=tot++;
}
int pre[MAXN],id[MAXN],visit[MAXN],in[MAXN],vis[MAXN];

int zhuliu(int root,int n,int m)
{
    int res=0,u,v;
    while(1)
    {
        for(int i=0; i<n; i++)
            in[i]=INF;
        for(int i=0; i<m; i++)
            if(edge[i].u!=edge[i].v&&edge[i].w<in[edge[i].v])
            {
                pre[edge[i].v]=edge[i].u;
                in[edge[i].v]=edge[i].w;
            }
        for(int i=0; i<n; i++)
            if(i!=root&&in[i]==INF)
                return -1;
        int tn=0;
        memset(id,-1,sizeof(id));
        memset(visit,-1,sizeof(visit));
        in[root]=0;
        for(int i=0; i<n; i++)
        {
            res+=in[i];
            v=i;
            while(visit[v]!=i&&id[v]==-1&&v!=root)
            {
                visit[v]=i;
                v=pre[v];
            }
            if(v!=root&&id[v]==-1)
            {
                for( u=pre[v]; u!=v; u=pre[u])
                    id[u]=tn;
                id[v]=tn++;
            }
        }
        if(tn==0)
            break;
        for(int i=0; i<n; i++)
            if(id[i]==-1)
                id[i]=tn++;
        for(int i=0; i<m;)
        {
            v=edge[i].v;
            edge[i].u=id[edge[i].u];
            edge[i].v=id[edge[i].v];
            if(edge[i].u!=edge[i].v)
                edge[i++].w-=in[v];
            else
                swap(edge[i],edge[--m]);
        }
        n=tn;
        root=id[root];
    }
    return res;
}
/*
double Dir_MST(int root, int V, int E)
{
    double ret = 0;
    while(true)
    {
        //1.找最小入边
        for(int i = 0; i < V; i++) in[i] = INF;
        for(int i = 0; i < E; i++)
        {
            int u = edge[i].u;
            int v = edge[i].v;
            if(edge[i].w < in[v] && u != v) {pre[v] = u; in[v] = edge[i].w;}
        }
        for(int i = 0; i < V; i++)
        {
            if(i == root) continue;
            if(in[i] == INF) return -1;//除了跟以外有点没有入边,则根无法到达它
        }
        //2.找环
        int cnt = 0;
        memset(id, -1, sizeof(id));
        memset(vis, -1, sizeof(vis));
        in[root] = 0;
        for(int i = 0; i < V; i++) //标记每个环
        {
            ret += in[i];
            int v = i;
            while(vis[v] != i && id[v] == -1 && v != root)  //每个点寻找其前序点,要么最终寻找至根部,要么找到一个环
            {
                vis[v] = i;
                v = pre[v];
            }
            if(v != root && id[v] == -1)//缩点
            {
                for(int u = pre[v]; u != v; u = pre[u]) id[u] = cnt;
                id[v] = cnt++;
            }
        }
        if(cnt == 0) break; //无环   则break
        for(int i = 0; i < V; i++)
            if(id[i] == -1) id[i] = cnt++;
              //3.建立新图
        for(int i = 0; i < E; i++)
        {
            int u = edge[i].u;
            int v = edge[i].v;
            edge[i].u = id[u];
            edge[i].v = id[v];
            if(id[u] != id[v]) edge[i].w -= in[v];
        }
        V = cnt;
        root = id[root];
    }
    return ret;
}
*/
int main()
{
    int T;
    scanf("%d",&T);
    int n,m,u,v,w;
    while(T--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            u--;
            v--;
            w=w*(-n);
            if(v==n-1)
                w+=u;
            add(u,v,w);
        }
        int ans=zhuliu(0,n,m);
        printf("%d %d\n",(n-1-ans)/n,(n-ans-1)/n*n+ans+1);///因为u做了减一操作,所以加1 
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值