传送门
大佬写的太好了,拿来分享,希望大佬不要生气
题意:给定一个有向图,求以1为根节点的最大树形图是多少并且输出n号节点的父亲节点(父亲节点字典序需要最小)。n是节点数目,m是边的数目。
分析:首先,这里求的是最大树形图,我们可以将所有边的权值乘以-1,然后根据最小树形图算法,求出最小树形图的权值和,再乘回-1就是该有向图的最大树形图权值。但是这样是求不出n号节点的最小字典序父亲节点的,朱刘算法中会将节点序号打乱,也就是我们会丢失节点序号,那这里怎么办呢?这里就用到了权值编码。我们可以思考,既然朱刘算法会将节点序号改变,那么什么是不变的呢?那肯定就是进入n号节点的最小边,如果我们将n号节点的父亲节点信息存到边中,然后再还原回来,不就可以了?这就是权值编码的神奇之处了。这里的操作是,我们将所有的权值都乘以-n,为什么是乘以-n,而不是乘以别的数呢?这里做个记号#1,先不讨论。然后当存在某条边(u,v,w),其中v是n号节点,那么我就将这条边的权值w+=u(这里的w已经进行过乘以-n的操作了。),那么这里问题来了,我这样w+=u,会不会改变节点到达n点权值的相对大小呢?正常情况下是会的,但是这里我们可以提前避开这个问题,这里做个记号#2,先不讨论。然后,当我们根据以上操作处理完所有的权值以及到达n的权值之后,就可以直接跑最小树形图。当我们做完最小树形图之后,会得到一个负数ans1,这个ans1=-n*wi+u,其中wi表示选中边初始的权值和,u表示进入n的父亲节点(神奇吧?),那么此时我们经过乘以ans1*-1,会得到ans2=n*wi-u,这时,我们可以很明显的发现,我们所求的最大树形图权值就是所有wi的和,n的最小字典序父亲节点就是u。到了这一步,我们的工作就是处理ans2。对于最大树形图的权值,我们不能直接(ans2=n*wi-u)/n,这里-u的做操作会使最终结果少1,因此,我们这样操作(ans2+n-1)/n=(n*wi-u+n-1)/n,这里0<-u+n-1
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 1e4+5;
const double PI = acos(-1);
const double eps = 1e-8;
const int MOD = 1e9+7;
const int INF=0x3f3f3f3f;
struct node
{
int u,v,next,w;
} edge[MAXN*10];
int head[MAXN],tot;
void init()
{
tot=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
edge[tot].u=u;
edge[tot].v=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++;
}
int pre[MAXN],id[MAXN],visit[MAXN],in[MAXN],vis[MAXN];
int zhuliu(int root,int n,int m)
{
int res=0,u,v;
while(1)
{
for(int i=0; i<n; i++)
in[i]=INF;
for(int i=0; i<m; i++)
if(edge[i].u!=edge[i].v&&edge[i].w<in[edge[i].v])
{
pre[edge[i].v]=edge[i].u;
in[edge[i].v]=edge[i].w;
}
for(int i=0; i<n; i++)
if(i!=root&&in[i]==INF)
return -1;
int tn=0;
memset(id,-1,sizeof(id));
memset(visit,-1,sizeof(visit));
in[root]=0;
for(int i=0; i<n; i++)
{
res+=in[i];
v=i;
while(visit[v]!=i&&id[v]==-1&&v!=root)
{
visit[v]=i;
v=pre[v];
}
if(v!=root&&id[v]==-1)
{
for( u=pre[v]; u!=v; u=pre[u])
id[u]=tn;
id[v]=tn++;
}
}
if(tn==0)
break;
for(int i=0; i<n; i++)
if(id[i]==-1)
id[i]=tn++;
for(int i=0; i<m;)
{
v=edge[i].v;
edge[i].u=id[edge[i].u];
edge[i].v=id[edge[i].v];
if(edge[i].u!=edge[i].v)
edge[i++].w-=in[v];
else
swap(edge[i],edge[--m]);
}
n=tn;
root=id[root];
}
return res;
}
/*
double Dir_MST(int root, int V, int E)
{
double ret = 0;
while(true)
{
//1.找最小入边
for(int i = 0; i < V; i++) in[i] = INF;
for(int i = 0; i < E; i++)
{
int u = edge[i].u;
int v = edge[i].v;
if(edge[i].w < in[v] && u != v) {pre[v] = u; in[v] = edge[i].w;}
}
for(int i = 0; i < V; i++)
{
if(i == root) continue;
if(in[i] == INF) return -1;//除了跟以外有点没有入边,则根无法到达它
}
//2.找环
int cnt = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0;
for(int i = 0; i < V; i++) //标记每个环
{
ret += in[i];
int v = i;
while(vis[v] != i && id[v] == -1 && v != root) //每个点寻找其前序点,要么最终寻找至根部,要么找到一个环
{
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1)//缩点
{
for(int u = pre[v]; u != v; u = pre[u]) id[u] = cnt;
id[v] = cnt++;
}
}
if(cnt == 0) break; //无环 则break
for(int i = 0; i < V; i++)
if(id[i] == -1) id[i] = cnt++;
//3.建立新图
for(int i = 0; i < E; i++)
{
int u = edge[i].u;
int v = edge[i].v;
edge[i].u = id[u];
edge[i].v = id[v];
if(id[u] != id[v]) edge[i].w -= in[v];
}
V = cnt;
root = id[root];
}
return ret;
}
*/
int main()
{
int T;
scanf("%d",&T);
int n,m,u,v,w;
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&w);
u--;
v--;
w=w*(-n);
if(v==n-1)
w+=u;
add(u,v,w);
}
int ans=zhuliu(0,n,m);
printf("%d %d\n",(n-1-ans)/n,(n-ans-1)/n*n+ans+1);///因为u做了减一操作,所以加1
}
return 0;
}