第3.7节 导数与曲线的绘制


3.7DERIVATIVES AND CURVE SKETCHING

If we compute n values of f(x),

                                                          f(x1),f(x2),……f(xn),

We obtain n points through which the curve y=f(x) passes.The first and second derivatives tell us something about the shape of the curve in the intervals between these points and permit a much more accurate plot of the curve. It is especially helpful to know the signs of the first two derivatives.

 

When the first derivative is positive the curve is increasing from left to right, and when the first derivative is negative the curve is decreasing from left to right.

When the first derivative is zero the curve is horizontal. These facts can be proved as a theorem if we define exactly what is meant by increasing and decreasing (see Figures 3.7.1 and 3.7.2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.7.1

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.2

 

DEFINITION

 

Afunction f is said to be constant on an interval I if:

                         f(x1)= f(x2)     for all x1, x2 inI.

fis increasing on I if :

                         f(x1)< f(x2)    whenever x1 <xin I.

fis decreasing on I if:

                         f(x1)> f(x2)     whenever x1 < x2 in I.

 

THEOREM1

      Suppose fis continuous on I and has a derivative at every interior point of I.

 

      (i) If f ′(x) =0 for all interior points x of I, then f isconstant on I.

      (ii) If f ′(x) >0 for all interior points x of I, then f isincreasing on I.

      (iii) If f ′(x) <0 for all interior points x of I, then f isincreasing on I.

 

      A proofwill be given in the next section.

 

EXAMPLE1  The curve y=x³ + x -1  has derivative dy/dx= 3x² + 1.

            The derivativeis always positive, so the curve is always increasing (Figure 3.7.3).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.7.3

 

Letus now turn to the second derivative. It is the rate of change of theslope of the curve, so it has something to do with the way in whichthe curve is changing direction. When the second derivative ispositive, the slope is increasing, and we would expect the curve tobe concave upward, i.e., shaped like a ___.When the second derivative is negative the slope is decreasing, sothe curve should be shaped like _______(seeFigure 3.7.4).

 

Aprecise definition of concave upward or downward can be given bycomparing the curve with the chord (straight line segment )connecting two points on the curve.

 

DEFINITION

 

Letf be defined on I. The curve y=f(x) is concave upward on I if for anytwo points x1<x2 in I and any value of x between x1and x2, the curve at x is below the chord which meets thecurve at x1 and x2.

 

Thecurve y=f(x) is concave downward on I if for any two points x1<x2 in I and any value of x between x1 and x2,the curve at x is above the chord which meets the curve at x1 andx2 (see Figure 3.7.5).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.7.4

 

 

Figure3.7.5

 

Thenext theorem gives the geometric meaning of the sign of the secondderivative.

 

THEOREM2

 

   Suppose fis continuous on I and f has a second derivative at every interiorpoint of I.

(i) If f ′′(x) > 0 for all interior points x of I, then f isconcave upward on I.

(ii) If f ′′(x) < 0 for all interior points x of I, then f isconcave downward on I.

 

Wehave already explained the intuitive reason for Theorem 2. The proofis omitted. Theorem 1 tells what happens when f ′always hasthe same sign on an open interval I, while Theorem 2 does thesame thing for f ′′. To use these results we need anothertheorem that tells us that certain functions always have the samesign on I.

 

THEOREM3

   Suppose iscontinuous on I, and g(x)0 for all x in I.

   (i) If g(c) > 0 for at least one c in I, then g(x) > 0 for all x inI.

   (ii) If g(c) < 0 for at least one c in I, then g(x) < 0 for allx in I.

 

   The twocases are shown in Figure 3.7.6. We give the proof in the nextsection.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.7.6

 

Letus show with some simple examples how we can use the first and secondderivatives in sketching

curves.The three theorems above and the tests for minima and maxima are allhelpful.

 

 

 

 

EXAMPLE1 (Continued)   y=x³ + x -1. We have

                             

             

 

 

 

 

  dy/dxis always positive, while d²y/dx² = 0 at x = 0. Wemake a table of values for y and its first two derivatives atx=0 and at a point to the right and left side of 0.

  

 

 

 

 

Withthe aid of Theorems 1-3, we can draw the following conclusions:

(a)dy/dx >0 and the curve is increasing for all x.

(b)d²y/dx²<0 for x<0; concave downward.

(c)d²y/dx² >0 for x >0; concave upward.

 

   At thepoint x=0, the curve changes from concave downward to concaveupward. This is called a point of inflection.

 

   To sketchthe curve we first plot the three values of y shown in thetable, then sketch the slope at these points as shown in Figure3.7.7, then fill in a smooth curve, which is concave downward orupward as required.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.7.7

 

EXAMPLE 2 Sketch the curve y=2x - x².

 

 

      We seethat dy/dx = 0 when x = 1, a critical point. d²y/dx²<0is never zero because it is constant.

      We makea table of values including the critical point x= 1 and pointsto the right and left of it.

 

 

 

 

 

 

 

 CONCLUSIONS

   (a) dy/dx> 0 for x < 1; increasing.

   (b) dy/dx< 0 for x >1; decreasing.

   (c) d²y/dx²<0<0 for all x; concave downward.

   (d) dy/dx = 0, d²y/dx² < 0 at x=1; maximum.

 

   The curveis shown in Figure 3.7.8.

 

   In generala curve y = f(x) may go up and down several times. To sketchit we need to determine the intervals on which it is increasing ordecreasing, and concave upward or downward. Here are some thingswhich may happen at the endpoints of these intervals.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.8

 

DEFINITION 

 

       Let cbe an interior point of I.

       f hasa local maximum at c if (c) ≥ f(x) for all x in some open interval(a0, b0) containing c.

       f hasa local minimum at c if (c) ≤ f(c) for all x in some openinterval (a0,b0) containing c.

                        (The interval(a0, b0) may be only a small subinterval of I.)

       f hasa point of inflection at c if f changes from one direction ofconcavity to the other at c.

 

       The definitionsare illustrated in Figure 3.7.9.

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.7.9

 

     We maynow describe the steps in sketching a curve. We shall stick to thesimple case where f and its first two derivatives are continuous on aclosed interval [a,b], and either are never zero or are zeroonly finitely many times. (Curve plotting in a more general situationis discussed in Chapter 5 on limits.)

 

Step1  Compute dy/dx and d²y/dx².

Step2  Find all points where dy/dx = 0  and all pointswhere d²y/dx² = 0.

Step3  Pick a few points

 

                    a= x0, x1,x2,……xn = b

Inthe interval [a, b]. They should include both endpoints, allpoints where the first or second derivative is zero, and at least onepoint between any two consecutive zeros of dy/dx or d²y/dx².

 

Step4  At each of the points x0,……xn, compute thevalues of y and dy/dx and determine the sign of

      d²y/dx².Make a table.

 

Step5  From the table draw conclusions about where y isincreasing or decreasing, where y has a local

      maximum orminimum, where the curve is concave upward or downward, and where ithas a point

      of inflection.Use theorems 1-3 of this section and the tests for maxima and minima.

 

Step6  Plot the values of y and indicate slopes from thetable. Then connect them with a smooth curve

      which agreeswith the conclusions of Step 5.

 

EXAMPLE 3  y = x4/2 - x2, -2 ≤ x ≤ 2.

 

Step1     dy /dx = 2x3 - 2x.   d2y/dx2 = 6x2 - 2.

 

Step2     dy/dx = 0 at x = -1,0,1.

Step3     d2y/dx2 = 0 at

 

 

 

 

Step4    

 

 

 

 

 

 

 

 

 

Step5  We indicate the conclusions schematically in Figure 3.7.10.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.10

 

 

Step6   The curve is W- shaped, as shown in Figure 3.7.11.

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.7.11

 

PROBLEMS FOR  SECTION  3.7

 

Sketcheach of the curves given below by the six-step process explained inthe text. For each curve, give a

tableshowing all the critical points, local maxima and minima, intervalson which the curve is increasing or

decreasing,points of inflection, and intervals on which the curve is concaveupward or downward.

 

1  y=+2,    -2 ≤ x ≤2                         2    y=1 - ,    -2 ≤x ≤ 2      

3  y=x² - 2x,    -2 ≤ x ≤2                       

4   _______________

y=2x² - 4x + 3,   0≤ x ≤2                     6    y= -x² - 2x + 6,  -4 ≤ x ≤ 0      

y=x4,          -2≤ x ≤ 2                    8    y=x5,         -2 ≤ x ≤ 2   

9  y=x³+x²+x,    -2 ≤ x≤ 2   

10 y=x³+x² - x,    -2 ≤ x≤ 2   

11 __________________

12 y= -x³+12x -12,    -3 ≤ x≤ 3   

13 y=x4+4+2,    -4 ≤ x ≤2   

14 _____________

15 ____________

 

16 y=x2(x-2)²,    -1 ≤ x ≤3  

17 __________

18 __________

19 __________

20__________

 

 

 

 

 

 

 

 

33 y=sin x cos x,  0≤ x ≤2              34      y=sin x + cos x,  0≤ x ≤ 2         

 

35

 

 

 

37  y= tan x,    -π/3≤ xπ/3               38    y=1/cos x, -π/3≤ xπ /

39  y= e -x,      -2 x2                   40    y= e(1/2)x -2 ≤ x≤ 2 

41  y = 1n x,   1/e xe                    42     y =( 1n x)²,  1/e xe  

43  y = x e -x,  -1 ≤ x ≤ 3                  44    y = x -ex,  -2x2

45  y = x1n x,   e-2 ≤ xe                  46    y = x - 1n x,   e-2xe

47  y = xex,  -3 ≤ x ≤ 1                    48    y=e -x ²,    -2≤ x ≤ 2

 

49                       

 

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值