审计署:清华北大等18所高校乱收费8亿

source: http://www.matrix.org.cn/thread.shtml?topicId=41568&forumId=3

 

中新网3月29日电 国家审计署今天发布公告,公布了18所部属高校2003年度财务收支审计结果。审计发现,高校在财务收支和收费等方面仍存在一些需要加以纠正和改进的问题,违规和不规范收费仍然存在。公告全文如下:



  18所部属高校2003年度财务收支审计结果

  (二〇〇六年三月二十九日公告)

  根据《中华人民共和国审计法》的规定,2004年,审计署对教育部等中央部门直属的18所高校2003年度财务收支情况进行了审计,并对债务、投资等情况进行了审计调查。

  一、审计情况及审计意见

  这次审计的18所高校均为教育部等中央部门直属高校,实行定员定额拨款和专项补助的预算管理体制。近年来,各高校认真贯彻《教育法》和《高等教育法》,积极实施“科教兴国”战略,不断加大教育投入,推进高校改革,初步建立了以财政拨款为主、多渠道筹措教育经费的投入机制,支出结构也不断改善,为学校增加积累、改善办学条件和扩大招生规模提供了财力保障。高等教育事业呈现出快速发展的势头。但审计和审计调查也发现,高校在财务收支和收费等方面仍存在一些需要加以纠正和改进的问题。

  (一)违规和不规范收费仍然存在。2003年,18所高校收取未经批准的进修费、MBA学费等64427万元,收取国家明令禁止的费用6010万元,自行设立并收取辅修费、旁听费等7351万元,超标准、超范围收取学费、住宿费等5219万元,强制收取服务性、代办性收费3284万元,重修费、专升本学费等554万元,共计8.68亿元。

  (二)部分高校大规模进行基本建设,造成债务负担沉重。至2003年末,18所高校债务总额72.75亿元,比2002年末增长45%,其中基本建设形成的债务占82%。

  (三)部分高校财务及校办产业管理较为薄弱。一是收支反映不实。14所高校未将科研收入、收费、投资收益等6.16亿元作为收入管理,有的滞留在所属单位坐收坐支。二是有些科研课题经费管理不规范。至2003年末,13所高校有1.73万个已结题科研课题未按规定结账,结存资金3.69亿元,仍分散滞留在已结题项目,未发挥效益。三是部分校办企业管理不严,有的存在严重违法违规问题。如清华大学所属北京清华阳光能源开发有限责任公司原总经理在1995年至2003年3月间,授意公司财务人员隐瞒部分销售收入等,私设“小金库”2138万元,并以发放奖金、对外投资和支付合作方红利等名义支取大量现金。

  上述问题,审计署已按照国家法律、法规的规定,出具了审计报告,下达了审计决定书。涉嫌犯罪的已移送有关部门处理。违规收费问题已由监察部牵头,会同国家发改委、财政部、教育部和审计署专题进行了研究,并提出了处理意见。

  针对审计和审计调查发现的问题,审计署建议:对高校收费进行一次全面清理,完善收费政策,明确收费标准;进一步完善教育、财政、物价、监察、审计等部门的联检机制,开展经常性的外部监督检查活动;加强对高校建设、投资及债务规模的宏观控制和监管;完善高校内部管理制度,健全内部考核和监督体系;加强对高校人员财经法规和财务管理知识的培训,提高管理能力和水平。

  二、审计发现问题的整改情况

  18所高校对审计发现的问题非常重视。对违规和不规范收费问题,已在积极整改,有些高校取消了违规收费项目,有的高校已将超标准收取的费用退还学生;对债务问题,按照教育部的有关要求,制定了还款计划,建立了贷款责任和风险控制制度;对收支反映不实问题,已全部纠正;对科研课题经费管理不规范问题,有关高校成立了专门小组,逐项进行清理,目前已有2所高校全部清理完毕,按规定完成了相关课题的结账工作,其他高校也正在加紧清理之中。

  各高校在认真落实审计决定的同时,还积极采取措施,强化内部管理。一是通报审计结果,提出整改和加强管理的要求。有的高校还在校内进一步开展了财务大检查。二是制定和完善了相关管理制度。针对审计发现的问题,各高校已制定或修订了30多项管理制度,涉及预算管理、财务管理、收费管理、科研经费管理、对外投资及二级单位管理等多方面。三是进一步深化财务管理体制改革,加快推行会计委派制。有的高校已全面实行会计委派制,加强了对二级单位的统一核算和管理。四是加强高校领导和财务人员培训,增强财经法纪意识,提高财务管理水平。

  教育部等有关部门高度重视审计结果,督促各高校认真落实审计决定,及时整改,并采取多种措施,加强对高校的监管。一是切实规范高校收费行为。教育部会同国家发改委和财政部联合下发了《关于做好2005年高等学校收费工作有关问题的通知》,进一步明确了收费政策和相关规定。国家发改委、教育部等7部委还联合下发了《关于开展全国教育收费专项检查的通知》,在全国范围内开展了教育收费专项检查。教育部还采纳审计建议,会同国家发改委、财政部研究完善MBA、EMBA、研究生进修班等办学形式的收费政策。二是完善制度,强化监管,促进高校加强财务管理,防范财务风险,提高资金使用效益。教育部会同有关部门出台了7项规定。如针对高校债务增长较快、负担沉重问题,教育部下发了《关于建立直属高校银行贷款审批制度的通知》,并会同财政部制定了《关于进一步完善高等学校经济责任制加强银行贷款管理切实防范财务风险的意见》,明确高校贷款的责任、审批程序及贷款资金管理使用等规定。同时要求有关高校将所有贷款项目的可行性研究报告、分年度贷款方案、具体还贷计划和措施等报送主管部门备案,由教育部、财政部及有关部门进行专项检查,督促落实。针对科研课题经费管理问题,教育部会同财政部下发了《关于进一步加强高校科研经费管理的若干意见》,细化了高校科研经费的管理原则、工作程序和项目责任等,要求科研项目结束后6个月内办理结账手续,无故逾期不办的由学校予以结账。三是加强对高校校办产业管理。教育部专门召开了全国高校科技产业工作会议,印发了《教育部关于积极发展、规范管理高校科技产业的指导意见》,要求进一步深化高校科技产业改革,规范管理,尽快建立现代企业制度;对长期亏损、投资无回报的企业坚决予以撤并或退出,进一步规范高校的投资和经营活动,规避风险。

  附件:审计的18所部属高校名单

  北京大学
  清华大学

  中国人民大学

  北京师范大学

  南京大学

  复旦大学

  天津大学

  武汉大学
  西安交通大学

  山东大学

  中南大学

  吉林大学

  大连理工大学

  四川大学
  兰州大学

  厦门大学

  哈尔滨工业大学

  暨南大学

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值