LCM from 1 to n

该博客介绍了如何找到1到n的最小公倍数(LCM),利用唯一分解定理给出递归公式,并通过筛法求素数、位图压缩节省空间,以及使用前缀和技巧计算LCM。文章提供了具体实现思路和解题要点,包括计算小于n的最大方次数并使用lower_bound找到相应素数位置。
摘要由CSDN通过智能技术生成

LightOJ 1289 LCM from 1 to n

  • Description
    Given an integer n, you have to find lcm(1, 2, 3, …, n)
    lcm means least common multiple. For example lcm(2, 5, 4) = 20,
    lcm(3, 9) = 9, lcm(6, 8, 12) = 24.

    Input Input starts with an integer T (≤ 10000), denoting the number
    of test cases. Each case starts with a line containing an integer n
    (2 ≤ n ≤ 108).

    Output For each case, print the case number and lcm(1, 2, 3, …, n).
    As the result can be very big, print the result modulo 232.

  • Sample Input
    5
    10
    5
    200
    15
    20

  • Sample Output
    Case 1: 2520
    Case 2: 60
    Case 3: 2300527488
    Case 4: 360360
    Case 5: 232792560

  • 利用唯一分解定理可以得出一个有趣的递归式:

    LCM(n+1)=LCM(n) |(n+1)不是一个素数p的方次,即p的k次方(k为正整数)
    LCM(n)*p |反之
    h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值