自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 决策树优缺点

3.在选择特征时,对于p(X1)~p(X2)=1/2和p(X1)~p(X6)=1/6这种情况,ID3决策树更倾向于选择后者,因为选择了后者后,我们的信息增益更大。以不重复的ID特征为例,每个ID的频率都是1/n,决策树一旦选择它,我们会获得最大的信息增益,但ID只是个标识,对于我们筛选毫无意义。5.由于计算机以二进制存储的特点,计算机对二叉树会更友好。优点:由于可以使用二叉树的形式分枝,计算机对其会更友好。3.可以结合二叉树的特点,处理连续型特征和做回归。2.由于去除了对数计算,计算资源得到改善。

2023-04-17 07:55:15 259

原创 数据的切片

2023-03-05 17:43:28 146

原创 【无标题】作业

import numpy as np import matplotlib.pyplot as plt x = np.arange(0.,10.,0.2) m = len(x) x0 = np.ones(m) input_data = np.vstack([x0,x]).T target_data = 2*x+5+np.random.randn(m) loop_max = 1000 epsilon = 1e-3 np.random.seed(0) theta = np.random.ran

2023-02-26 21:33:51 174

原创 202113430133

202113430133刘登伟

2023-02-15 20:52:56 226

原创 202113430133

2023-02-15 16:17:22 70

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除