基数排序介绍
1)基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或 bin sort,顾
名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
2)基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
3)基数排序(Radix Sort)是桶排序的扩展
4)基数排序是 1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个
位数分别比较。
基数排序基本思想.
将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。
这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列
代码实现:
package com.atguigu;
import java.util.Arrays;
import java.util.Vector;
public class RadixSort {
public static void main(String[] args) {
int arr[] = { 53, 3, -542, 748, 14, -214};
radixSort(arr);
//带负数的排列方法
//LSDSort(arr);
System.out.println("基数排序后 " + Arrays.toString(arr));
}
//基数排序方法
public static void radixSort(int[] arr) {
//根据前面的推导过程,我们可以得到最终的基数排序代码
//1. 得到数组中最大的数的位数
int max = arr[0]; //假设第一数就是最大数
for(int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
//说明
//1. 二维数组包含10个一维数组
//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
//3. 名明确,基数排序是使用空间换时间的经典算法
int[][] bucket = new int[10][arr.length];
//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
//可以这里理解
//比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
int[] bucketElementCounts = new int[10];
//这里我们使用循环将代码处理
for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
for(int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中是数据,放入到原数组
for(int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
if(bucketElementCounts[k] != 0) {
//循环该桶即第k个桶(即第k个一维数组), 放入
for(int l = 0; l < bucketElementCounts[k]; l++) {
//取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
}
}
public static void LSDSort(int a[]) {
int max = a[0];
for (int i = 1; i < a.length; i++) {
if (a[i] > max)
max = a[i];
}
int len = 0; // 存贮最大的数的位数,用来判断需要进行几轮基数排序
while (max > 0) {
max = max / 10;
len++;
}
for (int times = 0; times < len; times++) // 按位数运行几次,每次都分裂成10份,在顺序链接
{
// 以下内容应为每次运行时,分割成0-9 个桶,然后顺序链接
@SuppressWarnings("unchecked")
Vector<Integer> num[] = new Vector[10];
for (int i = 0; i < num.length; i++) {
num[i] = new Vector<Integer>();
}
int k = 1; // 用来取出当前的对应的位数的数
for (int i = 0; i < times; i++) {
k = k * 10;
}
for (int i = 0; i < a.length; i++) // 对每一个数进行判断位数
{
int x = 0; // 用来表示当前的位数上的数的大小
x = Math.abs(a[i]) / k; // 使用绝对值,防止受到正负号的影响
x = x % 10;
num[x].add(new Integer(a[i]));
}
// 将排序的结果顺序连接起来
int count = 0;
for (int i = 0; i < num.length; i++) {
for (int j = 0; j < num[i].size(); j++) {
a[count++] = num[i].get(j).intValue();
}
}
}
// 判断完绝对值大小顺序后,需要判断正负了
Vector<Integer> plus = new Vector<Integer>(); // 储存正数
Vector<Integer> minus = new Vector<Integer>(); // 储存负数
for (int i = 0; i < a.length; i++) {
if (a[i] <= 0) {
minus.add(new Integer(a[i]));
} else {
plus.add(new Integer(a[i]));
}
}
int count = 0;
for (int i = minus.size() - 1; i >= 0; i--) // 因为这是按照绝对值大小排列的,所以要倒序
{
a[count++] = minus.get(i);
}
for (int i = 0; i < plus.size(); i++) {
a[count++] = plus.get(i);
}
}
}
LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好。MSD的方式与LSD相反,是由高位数为基底开始进行分配,但在分配之后并不马上合并回一个数组中,而是在每个“桶子”中建立“子桶”,将每个桶子中的数值按照下一数位的值分配到“子桶”中。在进行完最低位数的分配后再合并回单一的数组中。
时间复杂度:
在基数排序中,r为基数,d为位数。则基数排序的时间复杂度为O(d(n+r))。
我们可以看出,基数排序的效率和初始序列是否有序没有关联。
空间复杂度
对于任何位数上的基数进行“装桶”操作时,都需要n+r个临时空间。
算法稳定性
在基数排序过程中,每次都是将当前位数上相同数值的元素统一“装桶”,并不需要交换位置。所以基数排序是稳定的算法。