插值查找,有序表的一种查找方式。插值查找是根据查找关键字与查找表中最大最小记录关键字比较后的查找方法。插值查找基于二分查找,将查找点的选择改进为自适应选择,提高查找效率。
1)插值查找原理介绍:
插值查找算法类似于二分查找,不同的是插值查找每次从自适应 mid处开始查找。
2)将折半查找中的求 mid索引的公式 , low表示左边索引 left, high表示右边索引 right.
key就是前面我们讲的 findVal
插值查找的前提是有序数列元素的值是成线性增长的(这个假设的精确度会影响算法的效率,但不会影响算法的正确性)。对于大多数有序数列来说,这前提是可以成立的。我们不妨假设它就是成立的,那样,当我们知道一个要查找值的大小后。就可以根据数列线性增长的性质,求出要查找的值在数列中的大概位置
比如说在数列A[lo,hi)中查找e。我们设e的下标为mi。由于数列线性增长,我们不难得到这个等式:
进而得出:
package com.atguigu;
public class InsertValueSearch {
public static void main(String[] args) {
int arr[] = { 1, 8, 10, 89,1000, 1234 };
int index = insertValueSearch(arr, 0, arr.length - 1, 1000);
System.out.println("index = " + index);
}
//编写插值查找算法
//说明:插值查找算法,也要求数组是有序的
/**
*
* @param arr 数组
* @param left 左边索引
* @param right 右边索引
* @param findVal 查找值
* @return 如果找到,就返回对应的下标,如果没有找到,返回-1
*/
public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
System.out.println("插值查找次数~~");
//注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要
//否则我们得到的 mid 可能越界
if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
return -1;
}
// 求出mid, 自适应
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
int midVal = arr[mid];
if (findVal > midVal) { // 说明应该向右边递归
return insertValueSearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 说明向左递归查找
return insertValueSearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}
时间复杂度
插值查找的时间复杂度也是O(logN)O(logN)。
注意事项
- 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快.
- 关键字分布不均匀的情况下,该方法不一定比折半查找要好