毕业设计-大数据电影推荐系统
今天给大家带来常见的毕设项目,电影推荐系统,此电影推荐系统结合了基于用户和基于内容的两种协同过滤算法作为推荐算法。同时采用Django框架作为后端,数据库采用的python自带的SQLite3数据库,简单轻便,非常容易使用。话不多说,大家直接看论文以及实际运行效果图。
- 以下为具体项目所对应论文的实际目录
1 绪论 1
1.1 选题的背景及意义 1
1.1.1选题背景 1
1.1.2选题意义 1
1.2 国内外研究现状 2
2 系统概述 4
2.1 系统的设计目标 4
2.2 系统开发环境 5
2.2.1硬件环境 5
2.2.2软件环境 5
2.3 开发相关技术介绍 5
2.3.1Python语言 5
2.3.2Django框架 5
2.3.3B/S框架 5
2.3.4SQLite3数据库 6
2.3.5Pycharm开发环境 6
2.3.6协同过滤算法 6
3 系统总体设计 10
3.1 系统可行性分析 10
3.1.1技术可行性 10
3.1.2经济可行性 10
3.1.3社会可行性 10
3.1.4法律可行性 10
3.2 系统功能设计 11
3.3 数据库逻辑结构设计 12
3.4 数据库物理结构设计 12
4 系统详细设计 16
4.1 数据管理模块 16
4.1.1电影数据管理 16
4.1.2用户数据管理 18
4.1.3用户行为管理 21
4.2 个性化功能模块 24
4.2.1登录注册 24
4.2.2搜索电影 25
4.2.3发表影评 26
4.2.4收藏电影 27
4.2.5电影评分 27
4.2.6观看电影 29
4.2.7排序电影 29
4.2.8修改个人信息 30
4.3 电影推荐模块 31
4.3.1基于用户推荐 31
4.3.2基于物品推荐 34
5 系统测试 35
5.1 测试目的 35
5.2 兼容性测试 35
5.2.1浏览器测试 35
5.2.2运行设备测试 36
5.3 功能测试 36
5.3.1用户注册功能测试 36
5.3.2用户登陆功能测试 37
5.3.3用户模块功能测试 37
5.3.4管理员模块功能测试 38
结论 39
参考文献 40
致谢 41
附录A:英文文献原文 42
附录B:英文文献译文 52
以下采用截取部分图片的方式供大家查看!
实际运行效果图如下!
电影推荐系统的后台如下所示
进行用户信息管理
用户发表的评论信息管理
前端用户注册界面
搜索功能的展示
个人信息修改页面
基于用户的推荐功能
基于物品的推荐功能
上述仅为部分内容,以供大家参考!谢谢大家!