动态规划问题的解决步骤

leetcode198 House Robber

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

class Solution {

 /*   

    1.暴力搜索 O(2^n)

    int solve(int idx, vector<int>& nums)
    {   
        if(idx < 0)
            return 0;

        if(idx == 0)
            return nums[0];
        else if(idx == 1)
            return max(nums[0], nums[1]);

        return max( solve(idx-2, nums) + nums[idx], solve(idx - 1, nums));
    }

     int rob(vector<int>& nums)
     {
        int n = nums.size();



        return solve(n-1, nums);


    }


    */



    /*

    2. 以空间换时间, O(n)

private:
    vector<int> result;

private:
    int solve(int idx, vector<int>& nums)
    {
        if(idx < 0)
            return 0;

        if(result[idx] >= 0)
            return result[idx];

        result[idx] = max(solve(idx - 2, nums) + nums[idx], solve(idx - 1, nums));

        return result[idx];
    }


public:
    int rob(vector<int>& nums) 
    {
        int n = nums.size();
        if(n==0)
            return 0;
        result.resize(n);
        for(int i=0; i < n; ++i)
        {
            result[i] = -1;
        }


        return solve(n-1, nums);


    }
    */


/*

3. 递归转迭代,变身动态规划
private:
    vector<int> result;

public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n==0)
            return 0;
        result.resize(n);
        if(n >= 1)
            result[0] = nums[0];
        if(n >= 2)
            result[1] = max(nums[0], nums[1]);

        for(int i = 2; i < n; ++i)
        {
            result[i] = max(result[i - 2] + nums[i], result[i - 1]);
        }
        return result[n-1];


    }


*/


    // 滚动数组 空间最小化 O(n) ==>> O(3)

public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n==0)
            return 0;

        vector<int> result(3);

        if(n >= 1)
            result[0] = nums[0];
        if(n >= 2)
            result[1] = max(nums[0], nums[1]);

        for(int i = 2; i < n; ++i)
        {
            result[i % 3] = max(result[ (i - 2) % 3] + nums[i], result[ (i - 1) % 3]);
        }
        return result[ (n-1) % 3];


    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值