研途
文章平均质量分 68
yue200403
对于要付费的内容,很抱歉,因为确实需要一点点收入,目前在读研究生。此外,如果你们需要什么教程,可以留言,我尽量整理。有问题请私信联系,每天8点查看私信。
展开
-
交换机
一、交换机1.1定义交换机(switch)是用来连接多个终端(电脑、手机、打印机),然后帮各个终端来转发数据的。交换机多为链路层设备(二层交换机),采用存储转发的形式来交换报文。三层交换机工作在网络层。交换机的性能取决于交换机的容量。两台电脑,可以用一根网线直连。多台电脑,需要借助交换机进行通信。1.2交换机工作原理交换机的转发原理,是记录下每个终端的mac地址,以及这个mac地址对应哪个接口。交换机维护一张mac地址表,接收到数据包后,可获得目的主机的mac地址,再通过查找mac地址表原创 2021-05-17 16:47:06 · 441 阅读 · 0 评论 -
Tcp协议
一、作用Tcp协议工作在传输层,用于确保数据包的可靠传输;保证数据的可靠性和完整性,防止丢包。二、Tcp报文结构第一行是4字节端口号:包括16位源端口号,16位目的端口号第二行是4字节序列号,即seq第三行是4字节ACK确认序列号,即ACK第四行:【0.5字节首部长度、1.5字节标志位、2字节窗口】4位数据偏移(也叫首部长度),代表了TCP报文头部的长度,即数据从哪里开始,每一位的单位是32位,而4位(1111)转化成10进制为15,即15个32位,即15*4字节,即报文头部长度最多位60字原创 2021-05-13 14:19:59 · 500 阅读 · 0 评论 -
神经网络与深度学习笔记 (五)深层神经网络
摘要:本文知识点主要有简单介绍深层神经网络、深层神经网络的传播过程、保证矩阵维数的正确性、深度神经网络强大的原因、神经网络正向传播和反向传播的流程图、参数和超参数和神经网络与人脑机制的关系。1.深层神经网络深层神经网络其实就是包含更多的隐藏层神经网络。如下图所示,分别列举了逻辑回归、1个隐藏层的神经网络、2个隐藏层的神经网络和5个隐藏层的神经网络它们的模型结构。命名规则上,一般只参考隐藏层个数和输出层。例如,上图中的逻辑回归又叫1 layer NN,1个隐藏层的神经网络叫做2 layer NN,2个翻译 2020-06-12 09:16:52 · 916 阅读 · 0 评论 -
神经网络与深度学习笔记 (四)浅层神经网络
本文主要包含神经网络模型的结构、单隐藏层的神经网络结构、单个样本的神经网络计算过程、m个样本的神经网络计算过程、常见的激活函数、为什么要使用非线性激活函数、激活函数的导数(梯度)、神经网络中如何进行梯度计算和网络模型中的参数权重W不能全部初始化为零的原因等知识点。原创 2020-06-10 19:07:07 · 2221 阅读 · 1 评论 -
神经网络与深度学习笔记 (三)python和向量化
摘要:本文主要包含向量化、向量化logistic回归、向量化logistic回归的梯度输出、Python中的广播、Python_numpy向量注意点、Jupyter Ipython笔记本使用介绍和logistic损失函数解释等神经网络的基础知识原创 2020-06-09 13:36:58 · 646 阅读 · 0 评论 -
神经网络与深度学习笔记(二)神经网络基础
摘要:总结一下神经网络第二小节学习的知识,整理学习笔记;本文主要讲二分类、逻辑回归、成本函数、梯度下降算法、神经网络的训练过程包括正向传播和反向传播。原创 2020-06-08 10:17:24 · 719 阅读 · 0 评论 -
神经网络与深度学习笔记(一)适合刚入门的小白
**摘要:学习神经网络的第一个笔记,主要是跟着吴恩达老师的中英文字幕学习视频来学习的,整理一下近期学习笔记;这个笔记主要是了解什么是神经网络和深度学习、神经网络原理、监督式学习、非监督式学习、深度学习强大的原因和总结。**原创 2020-06-07 09:22:01 · 1476 阅读 · 0 评论 -
基于实例推理方法学习笔记
摘要:基于实例推理方法的学习了解。主要是学习其思想以及原理。def:基于实例推理方法(CBR)是一种相似问题求解方法。核心:用过去实际中所用到的实例和经验解决新的问题。原理:它根据问题的特征,从实列库中检索出相似实例,然后以知识库中的领域知识和经验作为指导。更据问题的实际情况对检索到的加以调整、修改和综合。使之满足于当前问题求解的需要。基本原理图:CRB系统应解决的问题:1.实例描述和实例库的建立2.实例的检索和修改策略3.实例的评价、存储及复用参考文献:基于实例推理的钻井液配方设原创 2020-06-06 21:32:44 · 1035 阅读 · 0 评论 -
智能信息处理专业是干嘛的?
**摘要:主要是介绍智能信息处理专业是干嘛的,包括其定义,涉及的领域,学习的内容和算法、发展趋势、工作前景和相关学习资料。**原创 2020-04-29 18:54:13 · 18782 阅读 · 2 评论