使用Python制作疫情数据分析可视化图表(二)

本文是关于Python疫情数据分析可视化的教程,介绍了如何将日期字段转换为时间序列,按日期和区域提取数据,并进行统计分析。通过实例展示了如何利用pandas进行数据处理,包括数据分组和聚合操作。
摘要由CSDN通过智能技术生成

python小白,在“一心学”公众号学习了一点疫情数据分析可视化的课程,记录下来,供小白参考。

目录
一、基本数据的查看和初步处理
二、时间序列与区域划分
三、快速查看不同省市疫情现状
四、累计确诊病例走势
五、不同省市确诊新增情况
六、全国疫情动态可视化
七、制作数据地图
八、如何用气泡图制作数据地图

第一章内容发布在(使用Python制作疫情数据分析可视化图表(一))https://blog.csdn.net/yue__yang/article/details/104538235,请自行食用。

二、时间序列与区域划分

1、数据类型转换为时间序列
在数据中,有一个字段是“date”,但是它的数据类型是整型(int),需要将其转换为日期的格式。查看字段数据类型的代码如下:

#读取数据
import pandas as pd
df = pd.read_excel('data_ncov.xlsx')
#查看字段类型
df['date'].dtype

先将int转换为string,再转换为datetime的格式

df['date'] = df['date'].astype('str')
df['date']
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值