Python 画图全攻略:从基础到进阶,代码+运行结果一次看够

Python 能成为数据可视化的“顶流”,离不开强大的绘图库。本文用 Matplotlib(基础)+ Seaborn(统计)+ Plotly(交互) 三大库,覆盖 8 种常见图表类型,附完整代码和运行结果描述,手把手教你画出专业级图表!

前置准备:安装绘图库

本文用到的库需提前安装(命令行执行):

pip install matplotlib seaborn plotly  # 安装三个库

一、Matplotlib:最经典的基础绘图

Matplotlib 是 Python 最老牌的绘图库,适合画基础图表(折线、柱状、散点等),代码灵活但略繁琐。

1.1 折线图(趋势分析)

场景:展示数据随时间或连续变量的变化趋势(如销售额月变化、温度曲线)。

import matplotlib.pyplot as plt
import numpy as np

# 准备数据(2023年各月销售额,单位:万元)
months = np.arange(1, 13)  # [1,2,...,12]
sales = [50, 60, 55, 70, 80, 90, 85, 100, 110, 120, 130, 180]

# 绘制折线图
plt.figure(figsize=(10, 5))  # 设置画布大小(宽10,高5)
plt.plot(months, sales, 
         color='blue',       # 线条颜色
         marker='o',         # 数据点标记(圆形)
         linestyle='-',      # 线条样式(实线)
         linewidth=2,        # 线条粗细
         label='月销售额')    # 图例标签

# 添加图表标题和轴标签
plt.title('2023年各月销售额趋势图', fontsize=14, fontweight='bold')
plt.xlabel('月份', fontsize=12)
plt.ylabel('销售额(万元)', fontsize=12)

# 添加网格和图例
plt.grid(True, linestyle='--', alpha=0.5)  # 虚线网格,透明度0.5
plt.legend()  # 显示图例

# 显示图表(IDE中会弹出窗口,Jupyter中直接显示)
plt.show()

运行结果描述
弹出一个宽10cm、高5cm的图表窗口,横轴是1-12月,纵轴是0-200万元。蓝色实线连接各月销售额,每个数据点用圆形标记(如1月在(1,50),12月在(12,180))。图表标题为“2023年各月销售额趋势图”,有浅灰色虚线网格,右上角显示图例“月销售额”。整体趋势为逐月上升,12月达到峰值180万元。

1.2 柱状图(分类对比)

场景:比较不同类别的数据大小(如各城市销售额、不同产品销量)。

import matplotlib.pyplot as plt

# 准备数据(2023年Q4各城市销售额)
cities = ['北京', '上海', '广州', '深圳']
sales = [150, 180, 120, 160]

# 绘制柱状图
plt.figure(figsize=(8, 5))
plt.bar(cities, sales, 
        color=['#4CAF50', '#2196F3', '#FF9800', '#E91E63'],  # 自定义颜色
        edgecolor='black',  # 柱子边框颜色
        width=0.6)          # 柱子宽度

# 添加数据标签(柱子顶部显示具体数值)
for i, v in enumerate(sales):
    plt.text(i, v + 5, f'{v}万元', ha='center', fontsize=10)  # ha: 水平对齐

# 设置标题和轴标签
plt.title('2023年Q4各城市销售额对比', fontsize=14)
plt.xlabel('城市', fontsize=12)
plt.ylabel('销售额(万元)', fontsize=12)

plt.show()

在这里插入图片描述

运行结果描述
四个彩色柱子(绿、蓝、橙、粉)分别对应北京、上海、广州、深圳。北京柱子高度150(顶部标“150万元”),上海最高180(顶部标“180万元”),广州最矮120。横轴标签为城市名,纵轴范围0-185万元。柱子带黑色边框,宽度适中,数据标签清晰。

1.3 散点图(相关分析)

场景:观察两个变量的相关性(如身高与体重、广告投入与销量)。

import matplotlib.pyplot as plt
import numpy as np

# 生成模拟数据(身高cm,体重kg)
np.random.seed(42)  # 固定随机数,结果可复现
height = np.random.normal(170, 5, 100)  # 均值170,标准差5,100个样本
weight = 0.7 * height + np.random.normal(0, 3, 100)  # 身高与体重正相关,带随机误差

# 绘制散点图
plt.figure(figsize=(8, 6))
plt.scatter(height, weight, 
            color='red',    # 点颜色
            alpha=0.6,      # 透明度(0.6避免重叠看不清)
            s=30,           # 点大小
            edgecolor='black')  # 点边框颜色

# 添加拟合直线(显示相关性)
m, b = np.polyfit(height, weight, 1)  # 1次多项式拟合(直线)
plt.plot(height, m*height + b, color='blue', linewidth=2, label='拟合直线')

# 设置标题和标签
plt.title('身高与体重相关性分析', fontsize=14)
plt.xlabel('身高(cm)', fontsize=12)
plt.ylabel('体重(kg)', fontsize=12)
plt.legend()

plt.show()

在这里插入图片描述

运行结果描述
红色散点大致呈“从左下到右上”的趋势(正相关),大部分点分布在蓝色拟合直线附近(如身高170cm时,体重约120kg)。点的透明度0.6,重叠部分不会完全遮挡。拟合直线方程约为 weight = 0.7*height + b,说明身高每增加1cm,体重约增加0.7kg。

二、Seaborn:统计图表的“懒人神器”

Seaborn 基于 Matplotlib,专为统计分析设计,能一键生成复杂图表(如直方图、箱线图、热力图),代码更简洁。

2.1 直方图(分布分析)

场景:观察数据的分布规律(如成绩分布、年龄分布)。

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

# 生成模拟数据(班级数学成绩,均值75,标准差10,100人)
np.random.seed(42)
scores = np.random.normal(75, 10, 100)

# 用Seaborn绘制直方图(带核密度曲线)
plt.figure(figsize=(8, 5))
sns.histplot(scores, 
             bins=15,           # 分15个区间
             kde=True,          # 显示核密度曲线(平滑的分布趋势)
             color='#FF5722',   # 直方图颜色
             edgecolor='black') # 边框颜色

# 设置标题和标签
plt.title('班级数学成绩分布直方图', fontsize=14)
plt.xlabel('分数', fontsize=12)
plt.ylabel('人数', fontsize=12)

plt.show()

在这里插入图片描述

运行结果描述
直方图由15个橙色柱子组成,横轴是分数(50-100分),纵轴是人数。柱子高度最高处对应分数75(均值),说明大部分学生成绩集中在70-80分。橙色曲线是核密度曲线(平滑的分布趋势),与直方图形状一致,呈现“钟形”正态分布特征。

2.2 箱线图(数据分布细节)

场景:展示数据的中位数、四分位数、异常值(如不同班级成绩的稳定性)。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np  # 补充缺失的numpy导入

# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体(Windows常用)
plt.rcParams['axes.unicode_minus'] = False     # 正常显示负号(避免负数符号乱码)

# 生成模拟数据(3个班级的数学成绩)
np.random.seed(42)
data = {
    '班级': ['A']*50 + ['B']*50 + ['C']*50,
    '成绩': np.concatenate([
        np.random.normal(75, 8, 50),   # A班:均值75,波动大
        np.random.normal(80, 5, 50),   # B班:均值80,波动小
        np.random.normal(70, 10, 50)   # C班:均值70,波动大
    ])
}
df = pd.DataFrame(data)

# 绘制箱线图(修复palette警告)
plt.figure(figsize=(10, 6))
sns.boxplot(
    x='班级', 
    y='成绩', 
    data=df, 
    palette='Set2',       # 颜色主题
    width=0.6,            # 箱子宽度
    showfliers=True,      # 显示异常值
    hue='班级',           # 关键修改:将x变量赋值给hue以避免警告
    legend=False          # 关闭重复的图例(因为hue和x是同一变量)
)

# 设置标题和标签(中文已正常显示)
plt.title('不同班级数学成绩箱线图', fontsize=14)
plt.xlabel('班级', fontsize=12)
plt.ylabel('成绩', fontsize=12)

plt.show()

在这里插入图片描述

运行结果描述
三个颜色不同的箱子(A班绿、B班黄、C班粉)对应三个班级。每个箱子中间的横线是中位数(A班约75,B班约80,C班约70),箱子上下边缘是四分位数(中间50%数据的范围)。B班的箱子最矮(高度小),说明成绩波动小(更稳定);C班的箱子最高且有更多异常值(上下的小圆圈),说明成绩差异大。

2.3 热力图(关联矩阵)

场景:展示多个变量的相关性(如特征间的相关系数矩阵)。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

# 生成模拟数据(5个变量的相关系数矩阵)
np.random.seed(42)
corr_matrix = np.round(np.random.rand(5, 5), 2)  # 生成0-1的随机数,保留2位小数
np.fill_diagonal(corr_matrix, 1)  # 对角线设为1(变量与自身完全相关)
corr_matrix = (corr_matrix + corr_matrix.T)/2  # 确保对称(相关系数矩阵是对称的)

# 变量名(模拟特征)
features = ['特征1', '特征2', '特征3', '特征4', '特征5']

# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, 
            annot=True,          # 显示每个格子的数值
            cmap='coolwarm',     # 颜色主题(蓝-白-红)
            xticklabels=features,  # x轴标签
            yticklabels=features,  # y轴标签
            linewidths=0.5,      # 格子边框宽度
            vmin=-1, vmax=1)     # 颜色范围(相关系数范围-1到1)

plt.title('变量间相关系数热力图', fontsize=14)
plt.show()

在这里插入图片描述

运行结果描述
图表是5x5的格子矩阵,每个格子颜色从蓝色(负相关)到红色(正相关)。例如,特征1和特征2的格子标“0.85”(红色,强正相关),特征3和特征5标“-0.32”(蓝色,弱负相关)。对角线全为1(黑色,因为数值1在颜色范围中间)。格子边缘有细白线分隔,数值清晰标注。

三、Plotly:交互式图表的“天花板”

前面的图表是静态的,而 Plotly 能生成可交互的图表(鼠标悬停看细节、缩放、拖动),适合做网页可视化或演示。

3.1 交互式折线图(动态查看)

import plotly.express as px
import pandas as pd

# 准备数据(2023年各月销售额)
data = {
    '月份': [1,2,3,4,5,6,7,8,9,10,11,12],
    '销售额': [50,60,55,70,80,90,85,100,110,120,130,180]
}
df = pd.DataFrame(data)

# 绘制交互式折线图
fig = px.line(df, x='月份', y='销售额', 
              title='2023年各月销售额(交互式)',
              labels={'销售额': '销售额(万元)'},  # 轴标签
              template='plotly_white')  # 白色背景模板

# 自定义线条样式
fig.update_traces(line=dict(color='blue', width=2, dash='solid'),
                  marker=dict(size=8, color='red'))  # 线条蓝色,数据点红色

# 显示图表(自动在浏览器打开,支持缩放、悬停)
fig.show()

在这里插入图片描述

运行结果描述
浏览器自动打开一个网页,显示折线图。鼠标悬停在数据点上,会弹出提示框显示具体月份和销售额(如悬停12月点,显示“月份:12,销售额:180万元”)。可以用鼠标拖动缩放(如只看1-6月),双击恢复原图。线条是蓝色实线,数据点是红色圆形,标题和轴标签清晰。

3.2 3D散点图(多维数据展示)

场景:展示三个变量的关系(如x、y、z坐标的空间分布)。

import plotly.express as px
import pandas as pd
import numpy as np

# 生成模拟数据(x, y, z坐标,颜色用类别区分)
np.random.seed(42)
df = pd.DataFrame({
    'x': np.random.rand(100),
    'y': np.random.rand(100),
    'z': np.random.rand(100),
    '类别': np.random.choice(['A', 'B', 'C'], 100)  # 随机分为3类
})

# 绘制3D散点图
fig = px.scatter_3d(df, x='x', y='y', z='z', 
                    color='类别',       # 颜色按类别区分
                    size_max=10,        # 点最大大小
                    opacity=0.7,        # 透明度
                    title='3D散点图示例')

# 自定义视角(初始显示角度)
fig.update_layout(scene=dict(
    xaxis_title='X轴',
    yaxis_title='Y轴',
    zaxis_title='Z轴'
))

fig.show()

在这里插入图片描述

运行结果描述
浏览器显示一个3D坐标系,100个彩色点(A类红、B类蓝、C类绿)分布在空间中。鼠标拖动可旋转视角,滚轮缩放,悬停点显示坐标和类别(如“x:0.5, y:0.3, z:0.8, 类别:A”)。点的透明度0.7,重叠部分可部分看到下层点。

四、图表美化技巧(通用)

无论用哪个库,好的图表都需要“颜值+信息”兼顾。以下是通用美化技巧:

需求实现方式(以Matplotlib为例)
字体变大/加粗plt.title('标题', fontsize=14, fontweight='bold')
避免x轴标签重叠plt.xticks(rotation=45)(旋转45度)
调整颜色主题使用Seaborn的 sns.set_palette('pastel')(柔和色调)
添加图表注释plt.annotate('峰值', xy=(12, 180), xytext=(10, 160), arrowprops=dict(arrowstyle='->'))(在(12,180)处加箭头注释)
保存图表为图片plt.savefig('销售额图.png', dpi=300, bbox_inches='tight')(dpi=300高清,bbox_inches='tight’去除白边)

五、总结:如何选择绘图库?

  • Matplotlib:适合基础图表(折线、柱状),代码灵活,适合需要精细调整的场景。
  • Seaborn:适合统计图表(直方图、箱线图、热力图),代码简洁,自动优化样式。
  • Plotly:适合交互式图表(网页展示、动态演示),支持缩放、悬停、3D等高级功能。

掌握这些图表,你已经能覆盖90%的数据可视化需求!动手跑一遍代码,调整参数(如颜色、线条样式),很快就能画出属于自己的专业图表~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值