分治法的经典问题——大整数相乘

设X和Y都是n位的二进制整数,现在要计算它们的乘积XY。我们可以用小学所学的方法来设计一个计算乘积XY的算法,但是这样做计算步骤太多,显得效率较低。如果将每2个1位数的乘法或加法看作一步运算,那么这种方法要作O(n2)步运算才能求出乘积XY。下面我们用分治法来设计一个更有效的大整数乘积算法。

 

图6-3 大整数X和Y的分段 

我们将n位的二进制整数X和Y各分为2段,每段的长为n/2位(为简单起见,假设n是2的幂),如图6-3所示。

由此,X=A2n/2+B ,Y=C2n/2+D。这样,X和Y的乘积为:

XY=(A2n/2+B)(C2n/2+D)=AC2n+(AD+CB)2n/2+BD             (1)

如果按式(1)计算XY,则我们必须进行4次n/2位整数的乘法(AC,AD,BC和BD),
以及3次不超过n位的整数加法(分别对应于式(1)中的加号),此外还要做2次移位(分别对应于式(1)中乘2n和乘2n/2)。所有这些加法和移位共用O(n)步运算。设T(n)是2个n位整数相乘所需的运算总数,则由式(1),我们有:

                             (2)

由此可得T(n)=O(n2)。因此,用(1)式来计算X和Y的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。为此我们把XY写成另一种形式:

XY=AC2n+[(A-B)(D-C)+AC+BD]2n/2+BD                     (3)

虽然,式(3)看起来比式(1)复杂些,但它仅需做3次n/2位整数的乘法(AC,BD和(A-B)(D-C)),6次加、减法和2次移位。由此可得:

                                 (4)

解递归方程套用公式法马上可得其解为T(n)=O(nlog3)=O(n1.59)。利用式(3),并考虑到X和Y的符号对结果的影响,我们给出大整数相乘的完整算法MULT如下:

function MULT(X,Y,n); {X和Y为2个小于2n的整数,返回结果为X和Y的乘积XY}
begin
  S:=SIGN(X)*SIGN(Y); {S为X和Y的符号乘积}
  X:=ABS(X);
  Y:=ABS(Y); {X和Y分别取绝对值}
  if n=1 then
     if (X=1)and(Y=1) then return(S)
                      else return(0)
         else begin
                A:=X的左边n/2位;
                B:=X的右边n/2位;
                C:=Y的左边n/2位;
                D:=Y的右边n/2位;
                ml:=MULT(A,C,n/2);
                m2:=MULT(A-B,D-C,n/2);
                m3:=MULT(B,D,n/2);
                S:=S*(m1*2n+(m1+m2+m3)*2n/2+m3);
                return(S);
              end;
end;

 

上述二进制大整数乘法同样可应用于十进制大整数的乘法以提高乘法的效率减少乘法次数。下面的例子演示了算法的计算过程。

设X=314l,Y=5327,用上述算法计算XY的计算过程可列表如下,其中带'号的数值是在计算完成AC,BD,和(A-B)(D-C)之后才填入的。


X=3141        A=31       B=41        A-B=-10

Y=5327        C=53       D=27        D-C=-26

           AC=(1643)'

           BD=(1107)'

          (A-B)(D-C)=(260)'

XY=(1643)'104+[(1643)'+(260)'+(1107)']102+(1107)'

  =(16732107)'


A=31        A1=3       B1=1        A1-B1=2

C=53        C1=5       D1=3        D1-C1=-2

           A1C1=15     B1D1=3     (A1-B1)(D1-C1)=-4

AC=1500+(15+3-4)10+3=1643


B=41        A2=4       B2=1        A2-B2=3

D=27        C2=2       D2=7        D2-C2=5

           A2C2=8     B2D2=7     (A2-B2)(D2-C2)=15

BD=800+(8+7+15)10+7=1107


|A-B|=10        A3=1       B3=0        A3-B3=1

|D-C|=26        C3=2       D3=6        D3-C3=4

           A3C3=2     B3D3=0     (A3-B3)(D3-C3)=4

(A-B)(D-C)=200+(2+0+4)10+0=260


如果将一个大整数分成3段或4段做乘法,计算复杂性会发生会么变化呢?是否优于分成2段做的乘法?这个问题请大家自己考虑。

 

 

代码的实现

设X和Y都是n位的二进制整数,现在要计算它们的乘积XY。我们可以用小学所学的方法来设计一个计算乘积XY的算法,但是这样做计算步骤太多,显得效率较低。如果将每2个1位数的乘法或加法看作一步运算,那么这种方法要作O(n2)步运算才能求出乘积XY。下面我们用分治法来设计一个更有效的大整数乘积算法。

 

图6-3 大整数X和Y的分段 

我们将n位的二进制整数X和Y各分为2段,每段的长为n/2位(为简单起见,假设n是2的幂),如图6-3所示。

由此,X=A2n/2+B ,Y=C2n/2+D。这样,X和Y的乘积为:

XY=(A2n/2+B)(C2n/2+D)=AC2n+(AD+CB)2n/2+BD             (1)

如果按式(1)计算XY,则我们必须进行4次n/2位整数的乘法(AC,AD,BC和BD),
以及3次不超过n位的整数加法(分别对应于式(1)中的加号),此外还要做2次移位(分别对应于式(1)中乘2n和乘2n/2)。所有这些加法和移位共用O(n)步运算。设T(n)是2个n位整数相乘所需的运算总数,则由式(1),我们有:

                             (2)

由此可得T(n)=O(n2)。因此,用(1)式来计算X和Y的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。为此我们把XY写成另一种形式:

XY=AC2n+[(A-B)(D-C)+AC+BD]2n/2+BD                     (3)

虽然,式(3)看起来比式(1)复杂些,但它仅需做3次n/2位整数的乘法(AC,BD和(A-B)(D-C)),6次加、减法和2次移位。由此可得:

                                 (4)

解递归方程套用公式法马上可得其解为T(n)=O(nlog3)=O(n1.59)。利用式(3),并考虑到X和Y的符号对结果的影响,我们给出大整数相乘的完整算法MULT如下:

function MULT(X,Y,n); {X和Y为2个小于2n的整数,返回结果为X和Y的乘积XY}
begin
  S:=SIGN(X)*SIGN(Y); {S为X和Y的符号乘积}
  X:=ABS(X);
  Y:=ABS(Y); {X和Y分别取绝对值}
  if n=1 then
     if (X=1)and(Y=1) then return(S)
                      else return(0)
         else begin
                A:=X的左边n/2位;
                B:=X的右边n/2位;
                C:=Y的左边n/2位;
                D:=Y的右边n/2位;
                ml:=MULT(A,C,n/2);
                m2:=MULT(A-B,D-C,n/2);
                m3:=MULT(B,D,n/2);
                S:=S*(m1*2n+(m1+m2+m3)*2n/2+m3);
                return(S);
              end;
end;

 

上述二进制大整数乘法同样可应用于十进制大整数的乘法以提高乘法的效率减少乘法次数。下面的例子演示了算法的计算过程。

设X=314l,Y=5327,用上述算法计算XY的计算过程可列表如下,其中带'号的数值是在计算完成AC,BD,和(A-B)(D-C)之后才填入的。


X=3141        A=31       B=41        A-B=-10

Y=5327        C=53       D=27        D-C=-26

           AC=(1643)'

           BD=(1107)'

          (A-B)(D-C)=(260)'

XY=(1643)'104+[(1643)'+(260)'+(1107)']102+(1107)'

  =(16732107)'


A=31        A1=3       B1=1        A1-B1=2

C=53        C1=5       D1=3        D1-C1=-2

           A1C1=15     B1D1=3     (A1-B1)(D1-C1)=-4

AC=1500+(15+3-4)10+3=1643


B=41        A2=4       B2=1        A2-B2=3

D=27        C2=2       D2=7        D2-C2=5

           A2C2=8     B2D2=7     (A2-B2)(D2-C2)=15

BD=800+(8+7+15)10+7=1107


|A-B|=10        A3=1       B3=0        A3-B3=1

|D-C|=26        C3=2       D3=6        D3-C3=4

           A3C3=2     B3D3=0     (A3-B3)(D3-C3)=4

(A-B)(D-C)=200+(2+0+4)10+0=260


如果将一个大整数分成3段或4段做乘法,计算复杂性会发生会么变化呢?是否优于分成2段做的乘法?这个问题请大家自己考虑。

 

 

代码的实现

/************************************************************************/
//函数功能:分治法求两个N为的整数的乘积
//输入参数:X,Y分别为两个N为整数
//算法思想:
//时间复杂度为:T(n)=O(nlog3)=O(n1.59)
/************************************************************************/
#define SIGN(A) ((A > 0) ? 1 : -1)
int IntegerMultiply(int X, int Y, int N)
{
    int sign = SIGN(X) * SIGN(Y);
    int x = abs(X);
    int y = abs(Y);
    if((0 == x) || (0 == y))
        return 0;
    if (1 == N)
        return x*y;
    else
    {
        int XL = x / (int)pow(10., (int)N/2);
        int XR = x - XL * (int)pow(10., N/2);
        int YL = y / (int)pow(10., (int)N/2);
        int YR = y - YL * (int)pow(10., N/2);
        
        int XLYL = IntegerMultiply(XL, YL, N/2);
        int XRYR = IntegerMultiply(XR, YR, N/2);
        int XLYRXRYL = IntegerMultiply(XL - XR, YR - YL, N/2) + XLYL + XRYR;
        return sign * (XLYL * (int)pow(10., N) + XLYRXRYL * (int)pow(10., N/2) + XRYR);
    }
}
int _tmain(int argc, _TCHAR* argv[])
{
    int x = 1234;
    int y = 4321;
    cout<<"x * y = "<<IntegerMultiply(x, y, 4)<<endl;
    cout<<"x * y = "<<x*y<<endl;
    return 0;
}



算法时间复杂度的计算过程推导

未优化的算法:

优化后的算法:


推导过程:
优化前推导:
T(1)=O(1);
T(2)=4O(1)+O(2);
T(4)=16O(1)+4O(2)+O(4);
T(8)=64O(1)+16O(2)+4O(4)+O(8);
.....
T(n)=n²O(1)+n²/4O(2)+n²/16O(4)+.....+O(n);
根据性质f=O(f) ① 得:
T(n)=O(n²)*O(1)+O(n²/4)*O(2)+O(n²/16)*O(4)+.....+O(n);
根据性质O(f)*O(g)=O(fg) ② 得:
T(n)=O(n²)+O(n²/2)+O(n²/4)+....+O(n);
根据性质O(f)+O(g)=O(max(f,g)) ③ 又因为n>=1,因此n²>n²/2>n²/4>.....>n;
因此T(n)=O(n²)。


同理可以推得优化后的T(n)=O(n^log(3/2)).

仅仅降低了时间复杂度,并未实现大整数相乘导致越界问题
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值