HDU2089_不要62_数位DP

题意

包含 4 或 62 字段的数字称为不吉利数字。统计 [n, m] 中吉利数字的数目。

思路

数位DP问题。
dp[i][j] (j 取 0 ~ 2)表示 [0, 10^i)区间内 吉利数的个数、吉利但第一位是2、不吉利的个数。转移方程不难写出,见AC代码部分注释即可。

关键的地方在于怎么处理 [n, m] 的限制。也是在这个题中学到的地方。这里要感谢百度文库里一个ppt,讲解的很清晰。

首先把 [n, m] 转化位 [0, m + 1) - [0, n)。
对于一个小于 n 的数,肯定是从高位到低位出现某一 < n 的对应位。如果某一位比 n 的对应位小,则后面的位可以 0 ~ 9 而没有限制。具体做法就是,枚举位 i ,前面的位固定等于 n 的对应位,后面的位则可以取到 0 ~ 9 而没有限制。

注意的几个点:
1.dp转移的方向和区间统计的方向是相反的。具体到本题中,dp转移方向从低位向高位,区间统计方向从高位向低位。
2.注意左闭右开的区间。
3.本题中,吉利数字数量过多,可以统计不吉利数字然后减去。

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=2089

AC代码

#include<cstdio>
#include<iostream>
#include<cstring>

using namespace std;

int n, m;
int A[10];                                                              //把数字的每一位分开
int dp[10][3];              //dp[i][0] 前i位中不含不吉利数字的个数;dp[i][1] 不含不吉利且第i位是2;dp[i][2] 含不吉利

void init()                                                             //计算dp数组(无大小限制,每一位都能取0 ~9)
{                                                                       //特别的,从低位向高位算,与后面的统计顺序相反
    memset(dp, 0, sizeof dp);
    dp[0][0] = 1;
    for(int i= 1; i<= 6; i++)
    {
        dp[i][0] = dp[i - 1][0] * 9 - dp[i - 1][1];                     //吉利数前加上一个4以外的数都是吉利数,但是i-1位首位是2时不能加6
        dp[i][1] = dp[i - 1][0];                                        //吉利数前加上2构成吉利数且首位是2
        dp[i][2] = dp[i - 1][2] * 10 + dp[i - 1][0] + dp[i - 1][1];     //不吉利数前加任一数都不吉利,吉利数前加4不吉利,i-1位是2前加6也不吉利
    }
}

int solve(int x)                                                        //计算[0,x)中的吉利数字,注意左闭右开
{
    int left = x, len = 0;                                              //把x各位拆开,len~1高位到低位
    while(left)
    {
        A[++ len] = left % 10;
        left /= 10;
    }

    A[len + 1] = 0;                                                     //最高位的高一位看作0
    int res = 0;                                                        //实际上记录的是不吉利数的个数
    bool flag = false;                                                  //前n位是否已经不吉利
    for(int i= len; i>= 1; i --)                                        //枚举第i位小于A[i],i之前都等于A[k],i之后不受x限制
    {
        res += dp[i - 1][2] * A[i];                                     //i-1位不吉利,i位0~A[i-1]任选
        if(flag) res += dp[i - 1][0] * A[i];                            //前面的位已经不吉利,这一位随便取
        else
        {
            if(A[i] > 4) res += dp[i - 1][0];                           //i位能取到4,吉利数加4不吉利
            if(A[i] > 6) res += dp[i - 1][1];                           //i位能取到6,下一位是2的情况不吉利
            if(A[i + 1] == 6 && A[i] > 2) res += dp[i][1];              //高一位是6,这一位能取到2
        }
        if(A[i] == 4 || A[i + 1] == 6 && A[i] == 2) flag = true;        //前面的位已经不吉利
    }

    return x - res;                                                     //总数-不吉利数 = 吉利数
}

int main()
{
    init();

    while(1)
    {
        cin >> n >> m;
        if(n == 0 && m == 0) break;
        cout << solve(m + 1) - solve(n) << endl;
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值