Codeforces Round #731 (Div. 3) A. Shortest Path with Obstaclea

该博客主要讨论了一种在二维平面上计算从点A到点B的最短路径问题,但需避免经过点F。通过判断点F是否位于线段AB上,来确定是否需要增加额外的距离。如果F点在两点之间,则路径长度加2,否则直接计算曼哈顿距离。程序实现中使用了条件判断和简单的距离计算,时间复杂度为O(1)。
摘要由CSDN通过智能技术生成

A. Shortest Path with Obstacle

题意

求从a点出发不经过f点到达b点的最短的曼哈顿距离

思路

if特殊判断一下
当三个点横坐标相等的时候,f点是否在2点之间
或者是当三个点纵坐标相等的时候,f点是否在2点之间
如果是的话 说明不能走直线,距离要+2
否则就是a到b的曼哈顿距离

时间复杂度:O t

#include<bits/stdc++.h>
#define fer(i,a,b) for(re i = a ; i <= b ; ++ i)
#define re register int
#define pll pair<int,int> 
#define x first 
#define y second 
#define sf(x) scanf("%d",&x)
#define sfl(x) scanf("%lld",&x)
typedef long long ll ;
using namespace std;
const int N =  1e6 + 10 , M = 1010 , inf = 0x3f3f3f3f , mod = 1e9 + 7 ;

int main()
{
    int t ;
    cin >> t ;
    while(t--)
    {
        int a , b , c , d , e , f ;
        cin >> a >> b >> c >> d >> e >> f ;
        
        // e >= min(a,c) && e <= max(a,c)
        // f >= min(b,d) && f <= max(b,d)
        if(a == c && a == e && f >= min(b,d) && f <= max(b,d) || b == d && b == f && e >= min(a,c) && e <= max(a,c))
        {
            cout << abs(a - c) + abs(b - d) + 2 << "\n" ; 
        }
        else
        {
            cout << abs(a - c) + abs(b - d) << "\n" ;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值