Datawhale AI 夏令营2024第四期方向1AIGC Task2粗略描述

Datawhale AI 夏令营2024第四期方向1AIGC Task2粗略描述

前言

再一次的,描述。我并不擅长诸类事物,因此,我仅能凭借自己薄弱所见所闻、所知所想来编写这段笔记。若出现可笑错误,还请各位可以点出,若能消耗些时间的话。

第一部分:Task2的目的

我们不需要重复造轮子,但是需要了解轮子的造法。对于baseline的代码而言,的确是如此,因为此刻,我们也没有必要去自己写一段。当然,由于各位也是在参与Datawhale的该方向的志士,因此仅仅停留在会使用轮子,大抵也是不够的,我们也需要去微微探求其本身——不过这是安全的,并不会导致你出现理智损失的情况(当然,也不排除。比如说,恐惧症什么的)
在Task1里,的确已经使用过了baseline代码,但是或许并不能有效理解。而Datawhale的Task2目的,便是要我们去理解。如何呢?询问他人固然是好办法。但现在,已经不是以前了。我们需要更好的学习。利用AI工具辅助,是好的选择。
乐意的话,也可以将baseline代码安置入Pycharm中,利用自带的AI工具进行分析,也是可以的(不过,目前我看来这几个内置工具更适合进行写,而不是读和补充)。当然,任意一款大语言模型都可以是你的选择,若有能力,也可以去选择GPT-4o或者是Claude3.5一类的国外模型。
学会使用AI工具进行辅助学习,是当下的热点,也是该Task2想要让我们学习到的技能手段。

第二部分:代码阅读

因为主要的步骤均在Datawhale的官方文件中有,我也就不必要进行重复性的工作了。因此,我仅进行部分的简要描述,以及一些个人看法。老样子,对应的网址我会放在“来源”部分。

第一步:拥有一个AI助手

一般来讲,国内知名的这几个对于这种基本的代码解读已经够用了,但是如果是续写代码,或许还是需要投入更多的人力资源,才可以达到预期的效果。
国内的:你可以使用通义千问、文心一言、kimi Ai、GLM、天工等大预言模型,一切看你喜好。
当然,如果有更大的挑战需求,也可以尝试先在本地部署大语言模型(如ChatGLM或Qwen系列的)再继续我们的Task2(不过这不是有些过分强势了吗?),当然,若需要本地部署,将会对电脑的性能有极大的需求(因此,按照目前的形势,我认为在本地部署,无论是对电子设备还是对用户本身,都是不友好的。不过如果你有极好的性能以及自信心,那当然是可敬的选择)。

第二步:让代码被代码阅读

不过,我们需要首先会更好的使用AI助手。虽然它是代码,但是我们依旧最好是给予合适且恰当的提示词(prompt)来进行引导,来让它更好的完成之后的任务。比如说,直接将一整串的代码抛给它,就不如先去让它知道之后要干什么,比如说“现在请你扮演一名程序员,为我解释代码。接下来我会向你提供一段完整的代码,请你进行总体解释;接着,我会将代码分段提供,请详细解释每段代码的作用,以及其中一些函数的原理。”(当然,有更好的提示词工程,但是我不会)
然后现在,你就可以进行一定量的询问了,一般来说,我们为了保证一个对话的完整性(因为不确定它的上下文强度能否包容一些“节外生枝”——比如说一些过于细致的追问以及与原先代码相差较大的拓展),可以选择创建多个对话,在一个中完整进行主干部分的询问,在其他进行拓展和细节提问(不过我认为可能也不需要,因为都是代码,上下文的污染影响基本不大。但如果是问了一篇文学文章,再问一篇,就有可能最后会被混杂在一起。)

第三部分:额外话题

最近看见了一篇关于AI的弊的文章,我会放在结尾供大家阅读思考。
因为最近时间紧迫,由不得我“长篇大论”。

第四部分:来源

Datawhale 2024/4/1/2文档:Datawhale (linklearner.com)
通义千问:https://tongyi.aliyun.com/
Kimi AI:Kimi.ai - 帮你看更大的世界 (moonshot.cn)
注:这里不再继续放置更多的大语言模型,请各位若有需要自己去寻找,上网获取正确的事物,也是一种本领
AI最终会破坏它触及的一切:Kaldi 之父:AI 最终会破坏它触及的一切 | 新程序员-CSDN博客
注:若打不开,可以复制名称,也基本上就搜索到了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值