Image inpainting

Reference: Christine Guillemot, Olivier Le Meur. Image inpainting: Overview and recent advances[J]. IEEE Signal Processing Magazine, 2014.

Image inpainting is an ill-posed inverse problem that has no well-defined unique solution. To solve the problem, it is therefore necessary to introduce image priors. All methods are guided by the assumption that pixels in the known and unknown parts of the image share the same statistical properties or geometrical structures. This assumption translates into different local or global priors, with the goal of having an inpainted image as physically plausible and as visually pleasing as possible.

The first category of methods, known as diffusion-based inpainting, introduces smoothness priors via parametric models or partial differential equations (PDEs) to propagate (or diffuse) local structures from the exterior to the interior of the hole (as shown in Figure 1, where U denotes the unknown part or the hole to be filled in, and S the source or known part of the image). Many variants exist using different models (linear, nonlinear, isotropic, or anisotropic) to favor the propagation in particular directions or to take into account the curvature of the structure present in a local neighborhood. These methods are naturally well suited for completing straight lines, curves, and for inpainting small regions. They, in general, avoid having unconnected edges that are perceptually annoying. However, they are not well suited for recovering the texture of large areas, which they tend to blur.

The second category of methods is based on the seminal work of Efros and Leung  and exploits image statistical and selfsimilarity priors. The statistics of image textures are assumed to be stationary (in the case of random textures) or homogeneous (in the case of regular patterns). The texture to be synthesized is learned from similar regions in a texture sample or from the known part of the image. Learning is done by sampling, and by copying or stitching together patches (called examplar) taken from the known part of the image. The corresponding methods are known as examplar-based techniques.

With the advent of sparse representations and compressed sensing, sparse priors have also been considered for solving the inpainting problem. The image (or the patch) is in this case assumed to be sparse in a given basis [e.g., discrete cosine transform (DCT), or wavelets]. Known and unknown parts of the image are assumed to share the same sparse representation. Examplar-based and sparse-based methods are better suited than diffusion-based techniques for filling large texture areas. Hybrid solutions have then naturally emerged, which combine methods dedicated to structural (geometrical) and textural components.

This article surveys the theoretical foundations, the different categories of methods, and illustrates the main applications.


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
我很抱歉,作为AI语言模型,我无法实现代码复现。但是,我可以提供以下步骤来帮助您实现图像修复(image inpainting): 1. 收集数据集:首先,您需要收集一些包含缺失区域的图像。您可以使用任何数据集,例如CelebA,COCO等。然后,您需要使用图像编辑工具(例如Photoshop)创建一些缺失区域,以便进行修复。 2. 加载数据集并准备数据:将数据集加载到您的开发环境中,并将其准备好使用。您需要将图像裁剪为相同的大小,并将其转换为您的模型可以接受的格式。 3. 建立模型:您可以使用任何深度学习框架(例如TensorFlow,PyTorch等)来建立您的模型。您可以使用卷积神经网络(CNN)或生成对抗网络(GAN)等架构来构建模型。 4. 训练模型:使用准备好的数据集和模型,开始训练模型。您需要确定训练模型的超参数,例如学习率,批量大小,迭代次数等。您可以使用交叉验证技术来评估模型的性能。 5. 测试模型:在训练模型之后,您需要测试模型的性能。您可以使用测试数据集来评估模型的性能,并查看模型是否能够准确地修复缺失区域。 6. 优化模型:如果您的模型的性能不是很好,您可以尝试使用其他超参数或尝试使用不同的架构来优化模型。 总之,图像修复是一个复杂的过程,需要大量的数据集和模型训练。通过尝试不同的模型和超参数,您可以找到最适合您数据集和任务的模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值