自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(549)
  • 资源 (14)
  • 收藏
  • 关注

原创 路由代理(Router Agent)的原理与实现

本文介绍了LangGraph中代理架构的高级开发方法,重点阐述了路由代理(RouterAgent)的核心原理及实现方式。通过条件边(conditional edges)机制,LangGraph支持根据状态(state)动态选择执行路径,并详细讲解了add_conditional_edges方法的使用。文章还深入分析了三种结构化输出方式:提示工程、提示工程+输出解析器以及内置工具方法with_structured_output(),其中特别介绍了使用Pydantic、TypedDict和JSONSchema实

2025-11-13 10:51:39

原创 LangGraph应用程序运维监控

LangSmith是大模型应用的监控调试平台,由LangChain团队开发,提供轨迹跟踪、日志记录和实时分析功能。其核心结构包含项目(Project)、轨迹(Traces)、运行(Runs)及辅助元数据。用户需注册账号并配置环境变量后即可使用,示例展示了如何通过LangGraph构建状态图实现聊天机器人功能,包括定义状态类、初始化大模型、添加节点边并实现流式交互。该工具有效解决了大模型应用开发中的调试和监控需求。

2025-11-13 10:00:26 1

原创 LangGraph 中 State 状态模式详解

LangGraph框架通过节点、边和状态的组合构建AI代理,其中状态(State)作为核心载体实现信息传递和功能支撑。状态采用共享字典数据结构,节点可读写状态并广播更新,确保数据流动。框架支持多种可视化方法(Mermaid/Graphviz/Pyppeteer)展现节点关系。Reducer函数机制允许为状态键定义独立更新逻辑(覆盖/累加等),结合TypedDict保障类型安全,适用于对话历史管理等场景。专用MessageGraph子类通过add_messages Reducer智能合并消息列表,优化对话应用

2025-11-12 21:45:16 12

原创 LangGraph 底层原理详细整理

LangGraph是一个基于LangChain表达式语言(LCEL)构建的AIAgent开发框架,支持多种主流大模型集成。其核心特性包括:1)采用循环图结构,通过节点(Nodes)和边(Edges)构建复杂工作流;2)引入共享状态管理机制(State),实现节点间的动态数据传递与更新;3)支持条件分支、循环等复杂逻辑控制;4)提供持久化和断点续传功能。框架包含Graph基类(管理基础图结构)和StateGraph(扩展状态管理)两个核心组件,开发者可通过简单的函数定义节点逻辑,并通过add_edge等方法构

2025-11-11 19:43:41 12

原创 基于 LangChain+RAG+MCP 的 Agent 核心原理与落地路径

本文介绍了使用LangChain构建本地知识库的系统流程,分为5个关键步骤:1)初始化核心组件,配置大模型、嵌入工具和向量数据库;2)加载本地文档并标准化处理;3)文档分块优化检索效率;4)构建向量知识库;5)通过RAG流程实现检索增强查询。系统将知识库封装为server端,提供rag_query接口,并通过client端实现工具调用和问答交互。整个方案采用模块化设计,支持多种文件类型和模型适配,具有扩展性强、答案可溯源等特点,可用于构建基于本地知识的智能问答系统。

2025-11-09 20:53:43 42

原创 GraphRag+MCP 技术栈实战:高性能 Agent 开发全解析

摘要:本文介绍了GraphRAG知识图谱的安装使用及服务端封装方法。首先说明GraphRAG的两种版本(微软官方版和国内大模型适配版)的安装方式,以及创建索引的基本命令。重点阐述如何将GraphRAG封装为API服务,包括三个关键步骤:1) 定义核心数据表常量并区分必选/可选文件;2) 实现数据加载逻辑,通过StorageFactory加载Parquet文件;3) 封装查询接口,调用local_search实现查询功能。最后提及初始化MCP服务框架,将GraphRAG集成到FastMCP服务中。

2025-11-08 14:57:46 26

原创 用 MCP 重构 RAG 智能体:3 步解决数据安全与多工具协同难题

MCP(ModelContextProtocol)是基于JSON-RPC2.0的开放标准协议,用于安全连接AI工具与数据源。其核心价值在于支持LLM智能体构建复杂工作流,提供预构建集成、跨厂商灵活性和数据安全保障。相比FunctionCall,MCP采用异步交互模式,具有标准化协议和多线程协作优势。 MCP+RAG+Agent架构将RAG服务工具化,通过MCP协议实现标准化对接。开发流程包括Server初始化、工具注册、业务逻辑实现和启动通信。客户端则负责连接服务端、协同大模型决策调用工具并整合结果。该架构

2025-11-07 16:36:12 113

原创 Adaptive Activation Steering: A Tuning-Free LLM TruthfulnessImprovement Method for Diverse Hallucin

大型语言模型(LLMs)在基于网络的应用中展示了显著的潜力[1, 34, 35, 48]。然而,尽管它们表现出流利性,却经常生成虚假陈述,或“幻觉”。这些幻觉对于构建负责任的网络构成了重大挑战,因为它们在医疗或法律咨询等应用中可能极其有害,在这些领域中高真实性是至关重要的[24, 31]。最近,一些研究人员指出,即使LLMs在训练答案中拥有正确的知识,它们也不总是提供真实的答案。例如,Wei等人[50]发现,ChatGPT可能在一个上下文中提供错误答案,而在另一个上下文中提供正确答案。

2025-11-03 09:59:29 14

原创 Steering Llama 2 via Contrastive Activation Addition

本文研究对比激活添加(CAA)技术对Llama2系列语言模型的行为调节效果。通过构建包含7种对齐相关行为的对比数据集,研究者在7B和13B参数的Llama2Chat模型上生成引导向量,发现CAA能有效调节多项选择和开放式生成任务中的目标行为。实验表明,CAA的效果优于系统提示,并能与监督微调互补,且对模型的一般能力(如MMLU基准测试)影响不显著。分析显示引导向量能捕捉语义相关标记的行为特征,且不同层的向量具有传递性。该技术为语言模型对齐提供了一种计算高效的新方法,但需注意保持生成文本质量与行为调节效果的平

2025-10-28 13:07:22 94

原创 Beyond Prompt Engineering: Robust Behavior Control in LLMs viaSteering Target Atoms

《引导目标原子(STA):大型语言模型精确行为控制新方法》 本文提出了一种基于稀疏自编码器(SAE)的引导目标原子(STA)方法,用于精确控制大型语言模型(LLMs)的行为。传统提示工程依赖专家设计且对微小变化敏感,而STA通过直接操作模型前向传播中的神经元激活实现更精细控制。实验表明,STA在安全控制任务中显著提升防御成功率(如Gemma-2-9B-it从83.89%提升至97.56%),且对模型通用能力影响较小。分析显示,中间层干预效果更优,且STA仅需少量样本即可生成有效引导向量。与提示工程相比,ST

2025-10-22 10:25:10 37

原创 Memory Decoder: A Pretrained, Plug-and-PlayMemory for Large Language Models

本文提出MemoryDecoder(MemDec),一种即插即用的预训练记忆模块,用于高效适配大型语言模型(LLMs)到特定领域。传统方法如领域适应预训练(DAPT)计算成本高且易导致灾难性遗忘,而检索增强生成(RAG)则带来显著推理开销。MemDec通过预训练小型Transformer解码器模仿非参数检索器的输出分布,实现即插即用适配,无需修改原始模型参数。实验表明,单个MemDec可适配多个模型架构,在生物医学、金融和法律领域均提升性能,同时保持推理效率(仅增加1.28倍延迟)。MemDec在知识密集型

2025-10-21 11:27:20 62

原创 Cuda reduce算子实现与优化

本文分析了CUDA并行归约计算的优化思路。原始归约方法存在线程闲置、线程束分歧和存储体冲突等问题,导致性能受限。优化方案通过warpReduce函数实现:1)采用无分支执行消除线程束分化;2)保持全线程参与避免闲置;3)利用寄存器级通信(__shfl_down_sync)替代共享内存访问,规避存储体冲突。这些改进使同一warp内的32个线程能同步执行相同操作,显著提升了并行计算效率。最终实现了更高效的GPU归约计算模式。

2025-10-20 21:11:08 76

原创 Softmax算子的实现与优化

本文介绍了Softmax函数及其优化实现,主要内容包括:1. Softmax核心作用是将实数向量转换为概率分布,广泛应用于多分类任务;2. 详细讲解了CPU和GPU实现方案,其中GPU版本通过样本级并行加速计算;3. 提出归约优化策略,利用多线程协作和共享内存提升行内维度计算效率;4. 引入洗牌指令优化Warp级归约,减少内存访问操作,性能提升20-30%;5. 提供完整代码实现和性能对比,展示不同优化策略的实际效果。文章系统性地阐述了Softmax的算法原理和工程优化方法,为深度学习框架中的Softmax

2025-10-20 20:08:18 65

原创 Training-Free Group Relative Policy Optimization

大型语言模型(LLMs)正逐渐成为能够与复杂现实世界环境互动的强大通用代理。它们在广泛的任务中表现出卓越的能力,包括复杂的问题解决[4,5,6]、高级网络研究[7,8,9,10]、代码生成和调试[11,12]以及熟练的计算机使用[13,14,15]。尽管它们的能力令人印象深刻,LLM代理在专业化的真实世界领域中往往表现不佳。这些场景通常需要集成外部工具(例如计算器、API、数据库),以及特定领域的任务定义和提示策略。

2025-10-17 10:18:28 62

原创 RLAD: Training LLMs to Discover Abstractionsfor Solving Reasoning Problems

[2510.02263] RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problemshttps://arxiv.org/abs/2510.02263 摘要:推理需要超越模式匹配或记忆解决方案,以识别和实施“算法程序”,这些程序可以用来推导出难题的答案。要做到这一点,需要识别最相关的原语、中间结果或共享程序,并在此基础上构建。虽然对长思维链进行强化学习(RL)后训练的目标是揭示这种算法行为,但大多数大型模

2025-10-16 10:33:42 24

原创 Machine Mental Imagery: Empower MultimodalReasoning with Latent Visual Tokens

视觉-语言模型(VLMs)联合编码图像和文本,并通过仅文本解码在视觉理解基准测试中取得了令人印象深刻的结果 [Wang et al., 2024]。诸如思维链提示和强化学习微调等技术可以延长这些文本推理轨迹并带来额外的收益。然而,VLMs在多模态推理任务(如空间推理)上仍然存在困难,这些任务需要的不仅仅是被动感知;它们需要对视觉元素的连贯理解和操作。考虑图1中的拼图谜题。人们不是对每个候选片段进行文本化,而是想象这两个片段如何对齐并决定正确的匹配。这种推理以一种自然的多模态方式展开,而不是仅通过语言。

2025-09-28 22:19:21 56

原创 Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization

OpenAI的OI系列模型(Aach et al.,2024)和DeepSeek-R1(DeepSeek-AI et al.,2025)展示了大规模强化学习在复杂推理任务中的显著潜力。然而,由于训练细节的不完全披露,许多关于高性能推理模型再现的深层次问题仍然存在。

2025-09-28 11:07:34 40

原创 A Minimalist Approach to LLM Reasoning: from RejectionSampling to Reinforce

我们研究了在微调大型语言模型(LLMs)时使用可验证奖励的强化学习(RL)算法。我们的重点是数学推理任务,这些任务在OpenAI的O1模型和DeepSeek-R1发布后最近受到了显著关注。LLM后训练的主要方法一直是近端策略优化(PPO),然而,PPO需要一个额外的评论家网络,超出了基本的强化算法,引入了计算开销和算法复杂性。同时,LLM的确定性转换特性也简化了问题,PPO的许多复杂组件可能在此设置中不必要。这一观察激发了设计更简单但有效的RL算法用于后训练LLM的兴趣。

2025-09-07 10:46:55 83

原创 RLPR: EXTRAPOLATING RLVR TO GENERAL DOMAINS WITHOUT VERIFIERS

大规模的可验证奖励强化学习(RLVR)已成为提升大型语言模型(LLMs)推理能力的有前途的范式(Jaech et al., 2024;这种范式不仅展示了扩展测试时计算以解决复杂问题的能力,而且还为具有激励探索和进化的人工通用智能(AGI)提供了宝贵的见解。然而,与可以从一般领域数据中学习基础能力的LLMs预训练相比,大多数RLVR方法仅限于数学(Hu et al., 2025b;Yu et al., 2025)和代码生成(Luo et al., 2025a;

2025-09-06 11:55:38 55

原创 Beyond the Trade-off: Self-Supervised Reinforcement Learning forReasoning Models’ Instruction Follo

推理模型在各种推理领域表现出色(OpenAI, 2024;Guo 等人, 2025;Seed 等人, 2025)。它们的指令遵循能力(即同时遵循多个约束的能力)对于确保在实际应用中的实用性至关重要。一方面,与人类用户的现实对话通常包含多个约束(Deshpande 等人, 2025)。另一方面,可靠的指令遵循对于推理模型在复杂任务中表现出色是必不可少的(Qi 等人, 2025)。然而,推理模型在推理能力和指令遵循能力之间表现出令人担忧的权衡。图1展示了这一现象。

2025-08-28 10:12:18 52

原创 CUDA的编译与调试

是 NVIDIA 官方提供的专用工具。注意:若需切换到第 6 个线程(如用户示例),需在核函数启动时配置更多线程(如。通过该命令可确认:调试信息已正确关联源代码,行号匹配无误。为同时满足 “环境验证” 和 “后续调试” 需求,需用。会在指定行的开头设置断点,程序运行到此处会自动暂停。已成功切换到 GPU 核函数的线程上下文,当前暂停在。的焦点会转移到指定线程,后续调试操作仅针对该线程。当需要调试 GPU 核函数时,若核函数配置了多个线程,可通过。

2025-08-27 21:49:18 302

原创 CausalVAE: Disentangled Representation Learningvia Neural Structural Causal Models

解耦表示学习在计算机视觉、语音和自然语言处理以及推荐系统等各种应用中具有重要意义[9, 20, 8]。原因在于它可能有助于提高模型的性能,即提高泛化能力、对抗对抗性攻击的鲁棒性以及可解释性,通过学习数据的潜在解耦表示。解耦表示学习的一个最常见框架是变分自编码器(VAE),这是一种深度生成模型,通过训练解耦潜在的解释性因素来实现。通过VAE实现解耦可以通过潜在因素的后验与标准多元高斯先验之间的Kullback-Leibler(KL)散度的正则化项来实现,这强制学习到的潜在因素尽可能独立。

2025-08-27 10:55:49 52

原创 Pro-Cap: Leveraging a Frozen Vision-Language Modelfor Hateful Meme Detection

表情包(meme)是将图片与简短文字结合的流行在线社交媒体交流形式。网络表情包通常用于表达幽默或讽刺。然而,它们也越来越多地被滥用来在各平台传播仇恨内容。仇恨表情包会基于身份特征(如种族、性别或宗教)攻击个人或群体 [5, 8, 12, 27]。仇恨表情包的传播可能引发在线冲突,甚至可能导致仇恨犯罪。因此,开发准确的仇恨表情包检测方法迫在眉睫。由于表情包具有多模态特性,仇恨表情包检测任务颇具挑战性。检测不仅需要理解图像和文字,还需理解这两种模态之间的交互方式。

2025-08-15 10:19:28 106

原创 从案例学习cuda编程——线程模型和显存模型

CUDA(Compute Unified Device Architecture,统一计算设备架构)是NVIDIA推出的一种并行计算平台和编程模型。它允许开发者利用NVIDIA GPU的强大计算能力来加速计算密集型任务。CUDA通过提供一套专门的API和编程接口,使得开发者能够编写在GPU上运行的程序,从而实现大规模并行计算。这个程序虽然简单,却包含了 CUDA 编程的多个核心要素,让我们逐一解析。​1. CUDA 程序的特殊头文件与命名空间​。

2025-08-06 20:26:14 237

原创 Learning without training:The implicit dynamics of in-context learning

大型语言模型和transformer架构[1]已经彻底改变了机器学习领域,并将在许多工业、科学和艺术领域产生类似的影响。尽管影响广泛,但LLM(大型语言模型)如何获得使其如此有用的新兴属性的机制在很大程度上仍然是一个理论谜团[2]。在这项工作中,我们关注LLM在上下文中学习的能力[3][4],在训练完全完成后,从训练期间未见过的例子中学习,但通过提示提供给训练过的系统。历史上,在机器学习中,从一系列例子中提取模式的能力被认为是一个动态过程,其中模型权重随着通过优化过程消耗的例子而更新[5]。

2025-08-04 10:35:23 90

原创 Unified Multimodal Chain-of-Thought Reward Modelthrough Reinforcement Fine-Tuning

2505.03318v1https://arxiv.org/pdf/2505.03318v1 近年来,多模态奖励模型(RMs)[Wang et al. 2024 2025, Zang et al. 2025, Xiong et al. 2024, He et al. 2024, Xu et al. 2024, Liu et al. 2025a, Li et al. 2025] 在将视觉模型输出与人类偏好对齐方面表现出色,为模型训练提供了关键的奖励信号[Wang et al. 2024 2025

2025-08-03 10:54:39 54

原创 Modality Interactive Mixture-of-Experts for Fake News Detection

近年来,在线社交网络的兴起使用户能够在互联网上自由表达他们的观点和情感。然而,这种转变也导致了在线假新闻的激增,假新闻被定义为故意操纵以传播虚假信息或错误信息的新闻内容[25]。通过社交网络快速传播假新闻严重威胁了公共知识和社会信任[30, 44],尤其是对更易受影响的弱势群体[11]。例如,2020年美国年轻成年人中与酒精相关的死亡人数增加了25%[2],这主要是由于社交媒体上关于COVID错误信息的传播,声称饮用高浓度酒精可以杀死病毒[14]。

2025-08-02 15:37:54 75

原创 Reinforcing General Reasoning without Verifiers

DeepSeek-R1-Zero [10] 最近展示了使用可验证奖励的强化学习(RL)训练大型语言模型(LLMs)可以极大地提高推理能力。在这个可验证奖励的强化学习(RLVR)框架 [17] 中,LLM 生成一个推理过程(即,思维链,CoT),然后给出最终答案。一个基于规则的程序随后提取并评估最终答案,如果最终答案是正确的,则将奖励1分配给响应,否则为0。该模型使用 GRPO [37] 进行 RL 训练——这是 PPO [36] 的一种简化变体。

2025-08-02 10:28:16 71

原创 Adversarial Style Augmentation via Large Language Modelfor Robust Fake News Detection

随着互联网的广泛使用和各种社交媒体平台的出现,人们开始自由地分享他们所知道的信息和他们自己的创意故事。然而,信息的轻松分享和消费超越了传统新闻机构,这也显著促进了假新闻的传播(Cha et al., 2021;假新闻是为了向读者提供虚假信息作为宣传,或者引导公众感知朝着预期的方向,以达到特定的目标(Lazer et al., 2018;这种虚假信息的传播对个人和社会产生了深远的负面影响,成为一个需要解决的重大社会挑战。手动确定互联网上所有信息的真实性在时间和资源方面极其昂贵。

2025-08-01 11:08:23 45

原创 Mixture-of-Recursions: Learning Dynamic RecursiveDepths for Adaptive Token-Level Computation

将Transformer网络扩展到数千亿参数已经解锁了令人印象深刻的少样本泛化和推理能力(Brown等,2020;Chowdhery等,2023;Llama团队,2024;Gemini团队,2024;Gemini团队,2025)。然而,伴随而来的内存占用和计算需求使得在超大规模数据中心之外进行训练和部署变得具有挑战性(Patterson等,2021;Momenti等,2024)。这促使研究人员寻求替代的“高效”设计(Tay等,2022;Wan等,2023)。

2025-07-31 11:35:40 63

原创 BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY

GPQA(Rein et al., 2024)、Math500(Hendrycks et al., 2021)、GSM8K(Cobbe et al., 2021)和Big-Math(Albalak et al., 2025)评估了在复杂、多步骤或科学推理中的校准,其中不确定性在多个步骤中累积。为了在这一领域定位我们提出的RLCR方法,我们调查了LLMs中置信度估计的四种趋势:(i)事后验证,(ii)基于采样的替代方案,(iii)内部信号探测,以及(iv)基于RL的校准。

2025-07-29 11:17:41 66

原创 大模型推理框架基础概述

RMSNorm:对每个 Transformer 子层的输入进行归一化,提高训练稳定性,速度提升约 40%。FFN_SiLU:使用 SiLU 激活函数替代 ReLU,增强模型的非线性表达能力。:将经过线性变换后的 Q、K 应用 rope 位置编码,提升模型对位置信息的处理能力。模型架构设计主要是:CNN + 任务网络,如 Faster R-CNN = ResNet + RPN + RoI Heads。核心组件是卷积层,模型相对较小(MB级别),嵌入式设备经过优化可支持。

2025-07-28 21:54:11 185

原创 Binary Classifier Optimization for Large Language Model Alignment

在生产环境中部署大型语言模型(LLMs)时,对齐LLMs一直是一个关键因素,因为预训练的LLMs容易产生不良输出。Ouyang等人(2022)引入了基于人类反馈的强化学习(RLHF),该方法涉及基于单个提示的各种完成及其比较来训练奖励模型,然后优化LLM以最大化这些奖励。随后,直接偏好优化(DPO)(Rafailo et al., 2023)被提出作为一种替代方案,它通过直接基于选择和拒绝的完成之间的偏好来优化模型,从而避免了训练奖励模型的需要。

2025-07-28 10:53:21 354

原创 A Macro- and Micro-Hierarchical Transfer Learning Frameworkfor Cross-Domain Fake News Detection

近年来,社交媒体上假新闻的快速和广泛传播对人们的日常生活构成了越来越大的威胁[6, 14, 19]。为了有效打击假新闻,自动检测假新闻变得至关重要[39]。新闻内容[11, 16, 20, 27]和用户互动(即用户互动)[1, 24, 34]。基于这些类型的数据,提出了单领域假新闻检测,它从新闻文章、用户互动或两者中提取有效特征,以识别单个新闻领域内新闻的真实性(即新闻是真是假)(例如,政治新闻或娱乐新闻)。

2025-07-27 10:16:19 60

原创 RM-R1: Reward Modeling as Reasoning

奖励模型(RMs)在大型语言模型(LLM)的后训练中扮演着关键角色,特别是在具有人类反馈的强化学习(RLHF)中,它们作为人类评估者的可扩展代理。(1)基于标量的奖励模型(ScalarRM)和(2)生成式奖励模型(GenRM)。基于标量的方法将奖励建模视为分类问题,通常在语言模型的基础上训练一个序列分类器。相比之下,生成式方法保留原始的语言模型解码头,并利用模型的生成能力来产生自由形式的成对判断。虽然基于标量的方法直接且通常有效,但它们是不透明的,不提供中间推理步骤来证明模型的决策。

2025-07-26 09:49:16 66

原创 RAEmoLLM: Retrieval Augmented LLMs for Cross-DomainMisinformation Detection Using In-Context Learni

互联网充斥着错误信息(Schuefele 和 Krause,2019),这对人们的生活和社会稳定产生了重大影响(Della Giustina,2023)。错误信息在教育、健康、科技等各个领域普遍存在,尤其是在互联网上,这要求人们花费大量时间和精力来辨别真相(Pérez-Rosas 等,2018)。然而,训练于特定已知领域的模型往往脆弱,并且在面对新领域的样本时容易做出错误的预测(Saikh 等,2020)。因此,检测跨领域错误信息已成为一个紧迫的全球性问题,带来了更大的挑战和困难。

2025-07-25 11:01:08 56

原创 Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals

最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提示和图像进行条件生成,使用户能够就视觉输入提出问题并进行对话。这些能力在最近引入的模型中得到了普及,例如GPT-4 Vision和LLAVA。虽然这些LVLMs展示了令人印象深刻的能力,但一个关键问题仍然存在,即它们在多大程度上可能具有有害的社会偏见。先前的研究已经广泛调查了语言模型中的社会偏见。

2025-07-25 09:48:11 130

原创 Gradient-Adaptive Policy Optimization:Towards Multi-Objective Alignment of Large Language Models

大型语言模型(LLMs)(Anthropic, 2023;OpenAI, 2024)已经在广泛的实际应用中展示了显著的能力(Bubeck et al., 2023),包括内容创作(Yuan et al., 2022)、编程辅助(Chen et al., 2021;Gao et al., 2023)和数学推理(Wei et al., 2022)。随着LLMs在日常AI系统中的日益整合,确保它们与人类偏好(如有帮助、无害和诚实)的一致性已成为一个关键挑战。

2025-07-24 10:07:31 71

原创 A Practical Examination of AI-Generated Text Detectors for LargeLanguage Models

我们使用了 MTG 摘要数据集(Chen 等,2022)进行此任务。完整的多语言数据集包含大约 200k 个摘要。我们使用了英语、西班牙语、法语和中文子集。

2025-07-23 10:47:51 51

原创 Mitigating Biases of Large Language Models in Stance Detection withCounterfactual Augmented Calibra

立场检测旨在自动识别作者在特定目标、主题或命题上表达的观点或态度(例如,支持、反对或中立)(Somasundaran 和 Wiebe,2010;Mohammad 等,2016)。随着社交媒体平台的发展,立场检测在分析社交媒体话题上的公众舆论中发挥着关键作用(Jang 和 Allan,2018;Ghosh 等,2019;Stefanov 等,2020;Sun 等,2018;Chen 等,2021)。

2025-07-22 16:20:44 45

人工智能+Vectornet源码详解+博客资源

人工智能+Vectornet源码详解+博客资源,博客地址https://blog.csdn.net/qq_52053775/article/details/128510992

2023-01-01

博客资源:clip-demo测试效果展示

博客资源,博客地址:https://blog.csdn.net/qq_52053775/article/details/127461404.clip--demo测试效果展示

2022-10-22

博客资源+pandas相关代码

博客中pandas相关操作代码,博客地址:https://blog.csdn.net/qq_52053775/article/details/125626554, 给个好评吧!

2022-10-14

博客资源+seaborn相关操作

博客配套资源,博客地址:https://blog.csdn.net/qq_52053775/article/details/125905536 给个好评吧!

2022-10-14

博客资源+Matplotlib绘图的基本使用

Matplotlib绘图的基本使用。建议参考博客:https://blog.csdn.net/qq_52053775/article/details/125866631 给个好评吧!!

2022-10-14

自然语言处理+情感分析+主题分析+词云图

词云图 情感分析 LDA主题分析 机械压缩去词

2022-07-13

数学建模+时间序列预测+LSTM+股票数据分析

数据挖掘 LSTM 时间序列预测 随机森林 基于LSTM的股票数据分析 数学建模 探究股票各指标的相关性、建立模型 建立LSTM时间序列模型

2022-07-13

python+词云图+自然语言处理

机械压缩去词 文本预处理 词云图

2022-07-13

基于LeNet-5的手写体数字识别

基于LeNet-5的手写体数字识别

2022-04-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除