自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(380)
  • 资源 (14)
  • 收藏
  • 关注

原创 ​因果引导的主动学习框架用于大规模语言模型去偏​——Causal-Guided Active Learning for Debiasing Large Language Models

随着**大规模语言模型(LLMs)**的广泛应用,它们在自然语言处理(NLP)任务中的表现取得了显著进展。这些模型通过大规模的无监督预训练过程,能够有效地理解语言结构和进行复杂的推理任务。然而,生成式预训练过程不仅让模型学习到语言的深层结构,也使其不可避免地从数据集本身吸收并继承了数据中的偏见。例如,位置偏见(即某些词汇在特定上下文中的出现频率较高)和刻板印象偏见(如性别或种族的刻板印象)被引入到模型的生成过程之中。这些偏见不仅影响了模型的输出质量,还可能加剧社会中现有的偏见和不平等问题。目前,

2024-12-08 20:52:59 148

原创 DeCoT: Debiasing Chain-of-Thought for Knowledge-Intensive Tasks inLarge Language Models via Causal

知识密集型任务中的偏差问题在知识密集型任务中,模型需要利用特定的上下文知识来回答问题。知识偏差:模型的预训练数据中可能包含错误或不完整的信息,导致生成推理路径时使用无关或错误的证据。逻辑不一致:即使上下文知识是准确的,模型生成的推理链条也可能缺乏逻辑一致性,从而影响答案的正确性。现有解决方案的局限性难以消除虚假相关性:模型倾向于使用提示中表面上相关但实际上无关的信息,从而导致错误的推理链。逻辑错误难以纠正:后处理(如事实校验)主要聚焦于修正推理路径中的事实错误,而无法修复逻辑错误。

2024-12-08 20:52:34 17

原创 Evidence Retrieval is almost All You Need for Fact Verification

证据检索与声明验证。尽管大量研究致力于开发复杂的声明验证模块,但证据检索的重要性往往被忽视。检索的证据与声明可能在语义上高度相似,但无法提供验证声明真实性所需的关键信息。证据检索与声明验证的分离导致训练信号无法从验证阶段传递至检索阶段,导致生成的证据嵌入与任务需求不符。本研究聚焦于证据检索这一关键但常被忽略的阶段,提出了一种端到端的训练框架,称为,旨在通过联合训练优化检索与验证的协同性能。RAV 框架混合证据检索(Hybrid Evidence Retrieval)检索器。

2024-12-06 17:22:20 167

原创 Situation-Dependent Causal Influence-Based Cooperative Multi-agentReinforcement Learning

交通信号灯控制(如城市交通优化)自动驾驶车辆协调(如多车辆路径规划与避障)机器人控制(如多机器人协作任务)在多智能体强化学习的研究中,传统方法通常采用完全独立的训练,即每个智能体独立学习,将其他智能体视为环境的一部分。然而,这种方法忽略了智能体之间的交互作用,尤其在非平稳环境中表现不佳。为应对上述问题,“集中训练与分散执行”(Centralized Training with Decentralized Execution, CTDE)框架应运而生。

2024-12-06 17:21:30 20

原创 Event-Radar: Event-driven Multi-View Learning for Multimodal FakeNews Detection

随着社交媒体的迅速发展,平台如Twitter已成为主要的信息获取渠道。然而,这些平台也成为假新闻传播的温床,带来社会分裂、阴谋论和安全隐患。尤其在2016年美国总统选举和COVID-19疫情期间,假新闻的传播引发了重大社会影响。多模态新闻中,文本和图像之间的一致性被认为是判断新闻真实性的关键特征。然而,现有方法在建模元素级别的不一致性方面虽取得一定成果,但在处理事件级别不一致性及应对低质量新闻样本时,仍面临显著挑战。事件级别多模态不一致性。

2024-11-19 11:50:39 76

原创 DQN代码详解

在 MountainCar-v0 环境中,智能体的目标是尽可能快地将一辆小车从山谷的一端(起始位置)驾驶到山谷的另一端(目标位置),通过学习如何利用环境中的动力学来实现目标。智能体只能施加力量(加速)来推动小车,且受到物理规律的限制:小车无法直接达到目标,需要先通过加速反复地上下山谷来获得足够的动能。

2024-11-18 21:58:12 193

原创 DQN系列算法详解

Q-Learning是一种强化学习算法,目的是通过选择能带来最大长期收益的行为来完成任务。做事包含瞬时奖励和记忆经验奖励:瞬时奖励:记忆经验奖励:DQN的引入:(1)状态定义:(2)Q和R的初始化 (3)迭代过程第一轮迭代 在得到最终 Q 表后,智能体可以通过选择 Q 值最高的路径,找到从任意状态出发,到达出口(状态5)的最优逃脱路径。 目录1. Q-learning1.1 概述 1.2 核心流程1.3 案例:密室逃脱2. DQN2.1 DQN的工作原理2.2 DQN的特点3. D

2024-11-18 21:57:26 94

原创 ChartCheck: Explainable Fact-Checking over Real-World Chart Images

事实验证技术在自然语言处理领域获得了广泛关注,尤其是在针对误导性陈述的检查方面。然而,利用图表等数据可视化来传播信息误导的情况却很少受到重视。图表在真实世界中广泛用于总结和传递关键信息,尤其是在科学文献、教科书、新闻报道和社交媒体上。然而,图表也可以被滥用,用来散布虚假信息或服务于某些特定的宣传目的。现有研究主要聚焦于误导性图表设计(如截断坐标轴等),但却忽视了图表解读中基于信息谬误的误导性陈述。验证这些陈述需要从紧密结合文本和视觉元素的图表中提取信息。

2024-10-24 11:20:30 331

原创 WISE:重新思考大语言模型的终身模型编辑与知识记忆机制

随着世界知识的不断变化,大语言模型(LLMs)需要及时更新,纠正其生成的虚假信息或错误响应。这种持续的知识更新被称为终身模型编辑。长期记忆(模型参数)和工作记忆(神经网络激活/表示的非参数化知识)。然而,这两种方式在终身编辑情境下存在局限性,无法同时实现可靠性泛化性和局部性。为了解决这一问题,本文提出了一种新的模型编辑方法——WISE。该方法采用双参数内存机制,在预训练知识与更新知识之间实现了无缝衔接,通过一种知识分片机制来避免知识冲突。

2024-10-24 10:41:27 325

原创 大型语言模型中的知识机制:综述与展望

知识是智慧的基石,也是文明延续的关键,它为我们提供了应对复杂问题和新兴挑战的基础原则与指导(Davis et al., 1993;在人类漫长的进化历史中,我们通过利用已获得的知识并探索未知领域,致力于培养更加高级的智慧(McGraw 和 Harbison-Briggs, 1990;众所周知,大型语言模型(LLMs)以其封装了大量参数化知识而著称,并在应用方面取得了前所未有的进展(Roberts et al., 2020;Heinzinger 和 Inui, 2020;

2024-10-17 20:09:14 238

原创 提升事实核查效率:文档级声明提取与去上下文化(Document-level Claim Extraction and Decontextualisation for Fact-Checking)

选取不同句子提取方法得到的前3个句子作为候选核心句子。使用去上下文化模型处理这些句子,得到去上下文化的声明句。最后通过核查价值分类器选择出最终的声明。使用chrF作为评估指标,以计算模型生成的去上下文化声明与事实核查员生成的去上下文化声明之间的相似性。

2024-10-17 20:08:44 80

原创 CoreGen项目实战——代码提交信息生成

源代码与自然语言之间的语义鸿沟是生成高质量代码提交信息的一个重大挑战。代码提交信息对于开发者来说非常重要,因为它们简明扼要地描述了代码更改的高层次意图,帮助开发人员无需深入了解具体实现即可掌握软件的演变过程。手动编写高质量的提交信息对开发者来说是额外的负担,特别是在大型项目中,这种负担尤为明显。目前,已有多种方法尝试解决这一问题。早期的研究通常采用预定义的模板来生成提交信息,但这种方法需要人工定义模板,且对无法匹配这些模板的提交可能无法生成有意义的信息。

2024-10-06 15:13:58 383

原创 从代码到语言:CoreGen 助力自动化提交信息生成

源代码与自然语言之间的语义鸿沟是生成高质量代码提交信息的一个重大挑战。代码提交信息对于开发者来说非常重要,因为它们简明扼要地描述了代码更改的高层次意图,帮助开发人员无需深入了解具体实现即可掌握软件的演变过程。手动编写高质量的提交信息对开发者来说是额外的负担,特别是在大型项目中,这种负担尤为明显。目前,已有多种方法尝试解决这一问题。早期的研究通常采用预定义的模板来生成提交信息,但这种方法需要人工定义模板,且对无法匹配这些模板的提交可能无法生成有意义的信息。

2024-10-06 15:13:54 849

原创 Open WebUI部署自己的大模型

允许用户定义不同采样器的顺序,例如先应用 top_p 再调整 temperature,以更好地控制生成行为。

2024-09-29 09:20:06 771

原创 CAMEL项目实战

评论员的反馈机制使得任务解决不再是单纯的线性过程,而更像是一个经过验证和优化的树形决策过程。AI用户负责进行任务规划,并通过对话提供明确的指令。与此同时,AI助手则根据AI用户的指令执行任务。通过这种指令-响应的循环,用户与助手在任务完成前会不断交换信息,直到任务的目标被完成。评论员的任务是为AI智能体提供反馈或选择最佳方案,类似于决策树搜索过程中的辅助决策者。整个过程是多轮的,每一轮对话都会推进任务解决的进程。提出一个初步的想法,并为不同的智能体分配角色。会将这个初步的想法具体化,使其变为可操作的任务。

2024-09-26 17:40:05 162

原创 ChatDev:基于对话的多智能体协同软件开发框架

1.1. 当前的挑战软件开发是一个复杂且多层次的过程,要求具备不同技能的团队成员之间密切合作。例如,架构师、程序员和测试人员需要通过自然语言和编程语言的结合来分析需求、开发系统、调试代码。然而,当前的开发流程面临多个挑战,尤其是在采用传统的瀑布式开发模型时。首先,每个开发阶段——从设计、编码到测试——都使用了深度学习来优化特定环节,尽管这些技术在各自阶段内有显著提升,但由于每个阶段的深度学习模型设计都不相同,导致了技术不一致性的问题。不同阶段的模型在架构和流程上相互隔离,缺乏跨阶段的整合。

2024-09-26 17:39:20 155

原创 CAMEL: Communicative Agents for “Mind”Exploration of Large Language Model Society

在解决现实世界问题的过程中,往往需要通过多个步骤才能完成复杂任务。尽管当前的大型语言模型已经在这一领域取得了显著进展,但它们的成功主要依赖于用户提供的精确输入或提示。为了解决复杂任务,用户必须不断向模型提供相关指令,这种过程需要用户具备深厚的领域知识,并且经常会耗费大量的时间和精力。对人类输入的高度依赖:语言模型必须依赖用户提供的提示来推进任务,而生成这些提示通常需要专业知识和技术经验。提示的复杂性和时间成本。

2024-09-24 15:30:26 92

原创 CodeAgent:用于代码审查的自主协作智能体

代码审查是软件维护中至关重要的一部分,通过审查代码的变更,软件维护人员可以确保代码的质量、遵守编程标准,并且能够发现潜在的错误或改进方案。近年来,为了提高代码审查的自动化水平,已经提出了多种方法。然而,当前的主流方法往往忽视了代码审查过程的互动性和协作性,更多的是关注如何针对特定需求(如漏洞检测)进行审查,但在实际的代码审查过程中,还涉及代码格式或代码修正一致性等多方面问题。在此背景下,本文提出了一个多智能体框架——CodeAgent,用于模拟团队协作模式中的代码审查过程。

2024-09-22 13:56:29 273

原创 大模型推理和部署框架vLLM

操作系统中的内存分页是一种用于管理和分配计算机内存的方法,主要应用于 Windows 和 Unix 等操作系统。它的基本思想是将内存分割成多个“页面”(Page),操作系统根据程序运行的需要将页面动态地加载到物理内存中,而不常用的页面则可以暂时存放到硬盘上的交换文件(Swap File)中。这种技术可以让内存使用更加高效,避免将所有程序的数据一次性加载到物理内存中,尤其是当系统资源有限时,这种机制可以显著提升系统的性能。

2024-09-18 14:15:07 783

原创 LLamaindex基本使用

语言模型虽然强大,但是否能够在特定领域或特定公司数据上有效工作,仍然存在疑问。模型经过大量公共数据的预训练,但缺乏公司私有数据的训练使其难以直接适应公司特定的问答需求。因此,关键问题在于如何增强这些模型,使它们能够处理公司专有数据并给出准确的回答。为了解决这一问题,需要开发一种方法,能够有效结合私有数据和已有的 LLM,从而在不从头训练模型的情况下,实现对特定领域的问答能力提升。

2024-09-17 20:28:24 281

原创 LangChain基本使用

LLMs、提示与解析器:与 LLM 的交互构成了 LangChain 的核心功能。LangChain 提供了一个统一的接口,用于调用不同的 LLM,并支持开源及私有模型的整合。提示(Prompts)组件负责生成连贯且高质量的模型输出,通过构建和复用提示模板来优化输出结果。输出解析器组件则简化了模型输出的处理流程,确保其符合后续处理的格式规范。

2024-09-14 22:56:03 155

原创 LLM之提示词工程

提示工程作为一门新兴的学科,专注于开发和优化提示技术,旨在提升语言模型(LMs)在各种应用与研究主题中的效能。掌握提示工程技能对于深入理解大型语言模型(LLMs)的潜力与局限至关重要。研究人员借助提示工程,致力于增强LLM在广泛且复杂的任务(如问答系统与算术推理)中的表现。而对于开发人员而言,提示工程则成为设计高效、强大提示技术的关键,这些技术能够无缝对接LLM与其他工具,实现功能的最大化利用。值得注意的是,提示工程远不止于简单的提示设计与开发。

2024-08-05 18:07:48 241

原创 ScreenAgent:基于LVLM的计算机控制智能体

大型语言模型(LLM),诸如ChatGPT与GPT-4,在自然语言处理领域(涵盖生成、理解及对话等任务)展现出了卓越的性能,并对其他人工智能领域的研究产生了显著的推动作用。尤为重要的是,这些技术的飞速发展,为智能LLM智能体的研究奠定了坚实的基础,使得这类智能体能够胜任更为复杂的任务。LLM智能体,作为一种以大型语言模型为核心计算引擎的AI实体,不仅具备了感知、认知、记忆等能力,还展现出了高度的行动自主性,能够执行一系列主动行为。

2024-08-04 10:54:40 157

原创 OUTFOX: LLM-Generated Essay Detection Through In-Context Learningwith Adversarially Generated Examp

大型语言模型(LLMs)以其庞大的模型规模及广泛的训练数据为显著特征,已在众多任务中展现出卓越的性能,涵盖高度的语言理解能力、流畅的文本生成以及通过上下文学习处理新任务的能力。然而,伴随这些成功而来的是对LLM潜在滥用的日益增长的忧虑,尤其是在教育领域,学生可能利用LLM生成的文本进行抄袭作业。鉴于此,设计能够识别LLM生成文本的检测器显得尤为重要。遗憾的是,当前存在的检测器在面对简单攻击(如文本转述)时,其表现往往不尽如人意。

2024-08-03 16:57:30 130

原创 揭秘对话式搜索中的广告检测——Detecting Generated Native Ads in Conversational Search

大型语言模型(LLMs)已成为构建对话式搜索引擎与检索增强生成系统的主流标准。然而,在大型规模上部署基于LLM的搜索引擎面临高昂成本,且尚缺乏明确的可持续商业模式。尽管订阅模式具备可行性,但鉴于广告在传统搜索引擎中的高收益性,其在对话式搜索中亦可能占据重要地位。对话式搜索引擎为广告领域带来了新兴机遇,允许将针对查询的相关产品或品牌广告直接融入生成的响应中。此类广告形式类似于原生广告与产品植入,其设计旨在模仿非商业内容的风格,并无缝融入娱乐内容之中。

2024-08-02 19:08:06 103

原创 Message Injection Attack on Rumor Detection under the Black-Box Evasion Setting Using Large Language

社交媒体平台在一定程度上加速了谣言的散播。近期的研究已将谣言检测视作一项图分类任务,并深入探讨了基于消息传播树(MPT)的谣言检测器。具体而言,MPT被构想为对话树的形式,其中根节点象征着源帖子,而后续节点则代表了转发或评论。相较于其他基于深度学习的谣言检测器,基于MPT的检测器通过学习MPT中的传播信息,在揭露谣言方面展现出了更优异的性能。然而,基于MPT的谣言检测器也面临着对抗性攻击的潜在威胁。评估其鲁棒性对于确保检测器在实际应用中的可靠性至关重要。

2024-07-31 17:35:57 74

原创 AutoAgents: A Framework for Automatic AgentGeneration

大语言模型(LLM)已展现出作为通用任务解决智能体的卓越能力,其知识储备与技能水平令人瞩目。然而,在面对需要高度密集知识与复杂推理的任务时,如预防幻觉、采用深度思考策略、确保信息可信度以及整合跨领域知识与长期规划等,这些模型仍面临诸多挑战。相比之下,人类通过协作解决问题的模式,能够高效地应对各领域中的非标准难题。通过分工合作、运用多样化的视角与专业知识,人类显著提升了解决方案的质量与可靠性。受人类协作解决问题模式的启发,近期的研究工作通过引入多智能体讨论机制,旨在提升LLM的任务解决能力。

2024-07-27 16:16:53 135

原创 大模型虽然具有幻觉,但是在事实验证方面具备较强的能力——Language Models Hallucinate, but May Excel at Fact Verification

LLMs在各类自然语言生成任务中展现出非凡能力,但“幻觉”问题依然是其不容忽视的短板,具体表现为生成非事实性或误导性内容。针对当前主流LLMs进行的人类评估结果显示,GPT-3.5在Wikipedia等熟悉领域生成的事实性输出比例亦不足25%,其他模型表现更为逊色。这一发现再次强调了“幻觉”问题的严峻性,并强调了开发高效事实验证策略的重要性。论文第二部分深入探讨了利用指令调优的LLMs进行事实验证的可行性。研究通过系统调查证实,

2024-07-26 13:06:52 99

原创 SNIFFER:用于可解释性的虚假信息检测的多模态大语言模型

近年来,随着Deepfake及其他媒体操纵技术的广泛应用,其逼真效果和对假新闻传播速度的显著加速,已引起社会各界的广泛关注。其中,将未经篡改的图像与全新的但虚假或误导性的上下文结合,形成所谓的“脱离上下文”(OOC)误导信息,已成为误导公众视线的一种简单且普遍的手段。以最近的以色列-哈马斯战争为例,社交媒体上涌现了大量OOC误导信息,这些误导信息往往涉及旧有图像的滥用,被错误地关联至不相关的武装冲突场景,甚至电子游戏内的军事画面。

2024-07-25 18:22:09 282

原创 多模态大语言模型助力现实世界的事实核查——Multimodal Large Language Models to Support Real-WorldFact-Checking

互联网中的虚假信息是一个重大挑战,尤其是涉及多模态声明的虚假信息,这些声明结合了文本、图像、视频和其他媒体类型。在这些情况下,视觉组件可能被操纵或用于使虚假声明脱离上下文。事实核查员和他们使用的工具需要能够处理多种模式。大语言模型(LLMs)存储了超出任何个人所能掌握的广泛信息,并且比任何搜索引擎都更具人性化。因此,它们可以成为事实核查员的强大工具,后者经常需要额外的事实知识来验证声明。

2024-07-23 11:32:07 168

原创 Graph RAG——从局部到全局实现高效查询摘要(QFS)

在现代信息处理技术的广袤领域中,检索增强生成(RAG)技术已成为从外部知识源检索相关信息的重要工具,使得大型语言模型(LLM)能够有效回答涉及私人或未见过的文档集合的查询。然而,在应对全局性查询时,RAG技术的效能受限。例如,当用户提出“数据集中的主要主题是什么?”此类问题时,便需要一种能够综合整个文本语料库信息的解决方案,这构成了查询聚焦的摘要(QFS)任务的核心。传统QFS方法在处理大规模文本时面临扩展性挑战,难以有效应对RAG系统所需的海量文本处理需求。

2024-07-14 11:36:41 476

原创 Agent-FLAN: Designing Data and Methods of Effective Agent Tuningfor Large Language Models

在深入探讨语言智能体技术时,我们观察到利用LLMs(大型语言模型)的卓越能力来感知环境、决策并行动,已成为应对复杂现实问题的有效策略。目前的研究重心主要集中在提示工程及多个闭源LLMs(如GPT-4)的框架调度上,以达成智能体任务的执行。尽管这些研究在成果与灵活性上表现出色,但闭源LLMs高昂的财务成本及潜在的安全问题成为其进一步推广的障碍。近期,开源LLMs作为有力的替代方案崭露头角,并在多种应用中展现出积极的成果。

2024-07-13 11:38:46 188

原创 FakeNewsGPT4:通过知识增强的大规模视觉语言模型推进多模态假新闻检测

当前,多模态假新闻的大量涌现导致了显著的分布差异,这一现状亟需我们开发具备广泛适用性的检测器。然而,现有假新闻检测器因特定领域内的训练方式,难以有效获取开放世界中的事实信息。这种训练的封闭性限制了传统检测器的能力,特别是在面对跨域假新闻时,其表现往往不尽如人意。具体而言,开放世界中的假新闻在两个方面具有显著的分布差异:一方面,其操纵内容多种多样,新闻的任一部分都可能受到创意策略的操控;另一方面,真实背景复杂多变,不同地区的新闻背景和主题焦点存在显著差异。

2024-07-12 12:07:40 505

原创 强化学习驱动的狼人游戏语言智能体战略玩法

在AI领域,构建具备逻辑推理、战略决策以及人类沟通能力的智能体一直被视为长远追求。大规模语言模型(LLMs)凭借丰富的知识储备和出色的泛化能力,在构建智能体方面呈现出巨大的应用潜力,并已推动了一系列近期的技术突破。这些基于LLM的智能体在网页浏览、复杂电子游戏及现实应用等多个场景中均展现出卓越的性能。在多智能体环境中,它们更是展现了与人类相似的互动、零样本合作以及与对手竞争的能力。尽管已取得显著成就,但在面对复杂的决策任务,如多智能体游戏时,

2024-07-11 12:29:26 214

原创 利用外部知识增强的LEMMA模型:提升多模态虚假信息检测的LVLM方法

多模态虚假信息通过综合文字、图像和视频等多元化形式,在社交平台上的传播过程中,相较于单一的文本虚假信息,其展现出了更高的可信度和深远的影响力,这无疑增加了其检测的难度。尽管大型语言模型(LLMs)在传统自然语言处理任务中展现出卓越的性能,但由于仅局限于文本资源处理,其在虚假信息检测领域的应用受到了限制。相比之下,大型视觉语言模型(LVLM)由于能够同时处理视觉和文本信息,展现出了在多模态虚假信息检测领域的显著潜力。然而,经研究发现,

2024-07-10 12:27:37 172

原创 文本大模型下游任务与peft微调实战

大模型在当前的技术背景下,尽管看似遥不可及,但我们仍需探讨如何克服算力挑战,并将其有效地应用于下游任务。lamma模型为我们提供了一个解决方案,它表明通过利用仅13B参数量的模型,我们依然可以达到接近1730亿参数的效果。接下来,我们不得不提及LORA技术,它针对的是模型训练过程中的实际挑战。显然,为每一个下游任务微调数千亿级别的参数是不切实际的。LORA提出了一种创新思路,即为每个下游任务训练一个小模型,并结合大模型与小模型的参数。这种方法不仅降低了应用大模型的难度,同时也增强了预训练大模型的通用性。

2024-07-09 19:39:46 866

原创 ChatEval:通过多代理辩论提升LLM文本评估质量

对文本质量的评估,无论是源自语言模型还是人类编写,长久以来都构成了一项艰巨且备受瞩目的任务。传统的评估方法,主要依赖于人工标注,因其在时间和成本上的高昂投入而显得尤为苛刻。为了解决这一问题,已有基于n-gram的自动评估指标如Rouge、BLEU和METEOR等被提出。然而,这些方法在应对开放式文本生成或需要特定领域专业知识的场景中,与人类判断的契合度相对较低。

2024-07-09 16:10:43 188

原创 Tell Me Why:利用大型语言模型进行可解释的公共健康事实核查

最近的COVID-19大流行突显了公共健康领域事实核查的关键需求。在信息通过社交媒体平台迅速传播的时代,手动事实核查的可行性面临重大挑战。健康领域的错误信息可能造成严重甚至致命的后果,这强调了自动化事实核查机制在防止潜在危机和保护公共健康中的重要作用。提供清晰的解释是有效事实核查的重要组成部分,因为事实核查人员需要说服其受众他们的基于证据的结论。虽然某些机器学习模型(如决策树和线性回归)由于其简单的操作框架而提供了一定程度的可解释性,但随着基于神经网络的大型语言模型的出现,情况发生了巨大变化。

2024-07-08 10:31:25 256

原创 文本关系抽取实战

语言技术平台(LTP) 提供包括中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注等丰富、 高效、精准的自然语言处理技术。关系可以是直接表达的,如“张三的父亲是李四”,也可以是隐含的,需要通过上下文推断。比如,指出“苹果公司”是“发布”的主语,“新手机”是宾语,这有助于识别出动作的执行者和承受者。例如,“苹果公司发布了新手机”会切分成“苹果”、“公司”、“发布”、“了”、“新”、“手机”。:首先需要识别出文本中的关键实体,这些实体可以是人名、地名、组织机构、时间、数量等具有特定意义的信息。

2024-07-07 18:33:37 482

原创 将大型语言模型模块化打造协作智能体

在去中心化控制及多任务环境中,多智能体合作问题因原始感官观察、高昂的通信成本以及多目标任务的复杂性而显得尤为棘手。过往研究往往基于无成本通信的假设,或依赖于具备共享观察能力的集中控制器。LLMs在自然语言理解、对话生成、世界知识的丰富性以及复杂推理能力方面展现出了卓越的性能。尽管已有研究证明,LLMs能够借助零样本或少样本提示驱动具身智能体完成单智能体任务,但在去中心化设置下,特别是在通信成本高昂的情况下,构建合作智能体仍面临巨大挑战。

2024-07-07 11:03:04 1177

人工智能+Vectornet源码详解+博客资源

人工智能+Vectornet源码详解+博客资源,博客地址https://blog.csdn.net/qq_52053775/article/details/128510992

2023-01-01

博客资源:clip-demo测试效果展示

博客资源,博客地址:https://blog.csdn.net/qq_52053775/article/details/127461404.clip--demo测试效果展示

2022-10-22

博客资源+seaborn相关操作

博客配套资源,博客地址:https://blog.csdn.net/qq_52053775/article/details/125905536 给个好评吧!

2022-10-14

博客资源+pandas相关代码

博客中pandas相关操作代码,博客地址:https://blog.csdn.net/qq_52053775/article/details/125626554, 给个好评吧!

2022-10-14

博客资源+Matplotlib绘图的基本使用

Matplotlib绘图的基本使用。建议参考博客:https://blog.csdn.net/qq_52053775/article/details/125866631 给个好评吧!!

2022-10-14

python+词云图+自然语言处理

机械压缩去词 文本预处理 词云图

2022-07-13

自然语言处理+情感分析+主题分析+词云图

词云图 情感分析 LDA主题分析 机械压缩去词

2022-07-13

数学建模+时间序列预测+LSTM+股票数据分析

数据挖掘 LSTM 时间序列预测 随机森林 基于LSTM的股票数据分析 数学建模 探究股票各指标的相关性、建立模型 建立LSTM时间序列模型

2022-07-13

基于LeNet-5的手写体数字识别

基于LeNet-5的手写体数字识别

2022-04-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除