自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(471)
  • 资源 (14)
  • 收藏
  • 关注

原创 Text-Guided Fine-grained Counterfactual Inference for Short Video Fake NewsDetection

检测假新闻对于防止虚假信息传播和维护公众信任至关重要(DiFonzo 和 Bordia 2007;Jin 等人 2017;Jankowski 等人 2020)。如今,短视频平台成为传播假新闻的关键渠道。这些平台融合了图像、视频、音频、社交内容和评论等多种模态,各模态具有不同的格式和特征,使得新闻真实性评估愈发复杂。当前短视频假新闻检测研究主要集中在如何有效整合多模态信息,常用方法包括主题建模(Choi 和 Ko 2021)和协同注意力机制(Qi 等人 2023a)。

2025-06-07 15:30:27 1

原创 DPO算法微调实战

步骤描述1. 数据准备输入 prompt,带有 chosen 和 rejected 两个回答2. 模型前向获取策略模型和参考模型在这两个回答上的 log 概率3. 计算目标函数用对比对数比构造 sigmoid 损失函数4. 反向传播只更新策略模型的参数,参考模型保持冻结微调运行过程:通过网盘分享的文件:大模型链接: https://pan.baidu.com/s/1kZNFLPNevEKQnLGzhcDmrg?pwd=gfw7 提取码: gfw7。

2025-06-04 22:59:10 247

原创 DPO 算法

传统的 RLHF 通过奖励模型和 KL 散度约束来优化策略,而 DPO 直接利用偏好数据进行最大似然优化,避免了复杂的强化学习过程和奖励模型的显式训练,简化了流程,提高了效率。该模型有以下基本假设:每个项目或实体都有一个潜在的能力值,这个值反映了该项目在与其他项目比较时获胜的概率。Bradley - Terry 模型是一种用于比较和排序多个项目或实体的统计模型。它最初由 Ralph Bradley 和 Milton Terry 在 1952 年提出,主要用于体育比赛中的胜负预测。

2025-06-03 22:11:35 118

原创 PPO: Proximal Policy Optimization Algorithms

在多个 MuJoCo 环境上对 PPO(Clip)与其他算法(如 A2C、A2C+Trust Region、CEM、Vanilla PG、Adaptive TRPO 等)进行了性能对比,训练时长为一百万时间步,结果如图 3 所示,展示了不同算法在 HalfCheetah-v1、Hopper-v1、InvertedDoublePendulum-v1、InvertedPendulum-v1、Reacher-v1、Swimmer-v1、Walker2d-v1 等环境中的表现。ChatGPT 的训练分为三个步骤。

2025-06-03 14:53:29 23

原创 Revisiting Tampered Scene Text Detection in the Era of Generative AI

深度模型的快速发展引发了计算机视觉领域的生成式 AI 革命,在可控编辑方面取得了显著进展(Sun et al. 2023b;然而,生成式 AI 的进步也导致了恶意虚假文本图像信息的传播,对社会信息安全构成了严重威胁(Wang et al. 2022;因此,检测 AI 篡改文本已成为近年来的重要课题(Qu et al. 2024a)。开发有效的 AI 篡改文本检测方法至关重要。近期,Tampered-IC3 数据集(Wang et al. 2022)被引入,用于基准测试场景文本篡改检测方法。

2025-06-03 11:56:12 39

原创 Fighting Spurious Correlations in Text Classificationvia a Causal Learning Perspective

尽管神经网络在标准基准测试中表现出色,但在泛化到分布外(OOD)数据时常常遇到困难。一个主要原因是它们倾向于依赖与任务没有因果关系但与标签存在虚假关联的特征,这在数据分布变化时会降低模型的鲁棒性。例如,在自然语言推理(NLI)任务中,如果数据集中的矛盾句子经常包含否定词,那么在此数据集上训练的模型可能会仅根据否定词的存在来预测矛盾,而不是依赖于真实的底层特征。当遇到这种虚假关联不成立的数据时,模型很可能会做出错误的预测。先前的工作将数据划分为基于类别标签和虚假特征组合的不同组别。

2025-06-02 22:04:34 17

原创 Counterfactual Debiasing for Fact Verification

随着信息的急剧增加,在线未验证的声明变得普遍,这在各个领域(如公共卫生(Naeem and Bhatti, 2020)、政治(Allcott and Gentzkow, 2017)和经济(Kogan et al., 2019))对公共安全构成威胁。因此,事实核查,即基于收集到的几个证据自动预测声明真实性,引起了大量研究兴趣(Liu et al., 2020;

2025-05-27 15:36:00 37

原创 MRR-FV: Unlocking Complex Fact Verifcation withMulti-Hop Retrieval and Reasoning

事实验证(FV)旨在利用可信证据自主评估文本声明的真实性,这有助于打击虚假信息的扩散,并提高社交媒体的可靠性和可信度(Guo, Schlichtkrull, 和 Vlachos 2022;Zhang 等人 2025)。现有的 FV 模型通常遵循一个两阶段范式,包括证据检索和声明验证(Hu 等人 2023)。证据检索侧重于在庞大的语料库中精确定位关键的证据句(Chen 等人 2022a)。

2025-05-23 16:11:26 42

原创 Enhancing Relation Extractionvia Supervised Rationale Verifcation and Feedback

关系抽取(RE)任务旨在抽取文本中实体之间的语义关系,这是信息抽取中的一个重要任务。与基于小型语言模型的微调策略不同(Wu 和 He,2019),最近的研究(Wan 等,2023;Ma 等,2023)利用大型语言模型(LLMs)的强指令理解和丰富的内在知识(Ouyang 等,2022;Touvron 等,2023;Bai 等,2022)来提升 RE 的性能。尽管取得了显著进展,基于 LLM 的方法在执行关系抽取时可能会受到关系偏差的影响。

2025-05-22 21:29:01 316

原创 LLaMA-Adapter

这种零初始化注意力机制的目的是在训练初期稳定梯度,避免由于随机初始化的适配提示带来的不稳定因素。通过门控因子gl​的自适应调整,在训练过程中逐渐平衡适配提示和输入文本的注意力贡献。

2025-05-21 22:22:30 189

原创 RaCMC: Residual-Aware Compensation Network with Multi-GranularityConstraints for Fake News Detectio

社交媒体的快速发展加速了自媒体的兴起,使普通人能够成为日常新闻的发布者。这加快了人们获取信息的速度。然而,这也导致了由于发布者断章取义、夸张和恶意篡改而引发的虚假信息的广泛传播,严重危害了社会安全与稳定。尽管国家机构与社交平台设立了新闻核查部门来区分真实和虚假新闻,但海量的新闻给新闻核查人员带来了沉重的负担。因此,自动假新闻检测成为研究热点。早期的方法是针对纯文本新闻设计的,旨在充分挖掘文本中的所有信息。例如,DSTS 方法设计了一种动态序列时间结构,旨在捕捉新闻传播过程中的时间变化特征。

2025-05-21 21:19:52 40

原创 Deconfound Semantic Shift and Incompleteness in Incremental Few-shot SemanticSegmentation

像素级标注在语义分割中的兴起推动了逐步扩展模型容量以学习新类别的方法需求,而无需重新训练整个模型。增量少样本语义分割(IFSS)能够在保留分割先前学习类别能力的同时,持续分割只有少量增量数据的新类别。语义偏移和语义不完整性。如图 1 (a) 所示,语义偏移是从增量语义分割(ISS)继承而来,其中先前学习步骤中的背景类可能在当前步骤转变为对象类,反之亦然。新信息的稀缺性和旧信息的不可访问性加剧了 IFSS 中的偏移,导致模型在旧知识和新知识上的认知混淆,并加剧了灾难性遗忘。

2025-05-19 11:20:46 28

原创 Is LLMs Hallucination Usable?LLM-based Negative Reasoning for Fake News Detection

近期,大型语言模型(LLMs),例如 GPT-4o、Claude 3 和 Llama 3.1,在人工智能领域,尤其是自然语言处理(NLP)方面取得了显著进展。这些在海量人类生成文本上训练的大型语言模型能够深入理解并解释提示,同时为这些提示生成全面、连贯且符合上下文的推理,从而使其适用于各种 NLP 下游任务,包括假新闻检测(Yang 等,2024;Bang 等,2023)。具体而言,大型语言模型可从多方面助力假新闻检测,涵盖上下文分析、内容理解、事实核查、来源验证、推理生成等(Liu 等,2024b;

2025-05-19 10:14:04 424

原创 QLoRA: Efficient Finetuning of Quantized LLMs

确定量化级别和范围:选择量化后的整数位数(如INT8),并确定对应的浮点数范围和整数范围。计算缩放因子:根据浮点数范围和整数范围计算缩放因子。量化:将浮点数通过公式映射为整数。

2025-05-17 19:38:46 82

原创 Where and How to Attack? A Causality-Inspired Recipe for GeneratingCounterfactual Adversarial Examp

深度神经网络 (DNNs) 在各种任务中取得了巨大成功,并被广泛应用于面部识别、医疗诊断和自动驾驶等关键领域。尽管取得了前所未有的成就,但 DNNs 仍然容易受到精心设计的对抗性样本的攻击。

2025-05-17 16:38:18 30

原创 Florence2代码实战

链接: https://pan.baidu.com/s/1kZNFLPNevEKQnLGzhcDmrg?pwd=gfw7 提取码: gfw7。通过网盘分享的文件:大模型。

2025-05-17 14:50:40 218

原创 External Reliable Information-enhanced Multimodal Contrastive Learningfor Fake News Detection

所提出的 ERIC-FND 模型框架如图 1 所示。该模型包含三个主要模块:外部信息增强模块,基于外部信息增强新闻文本内容;多模态信息交互增强模块,实现联合多模态表征;自适应融合分类模块,自适应地融合所有特征以完成分类。

2025-05-17 10:15:08 33

原创 Debiased Multimodal Understanding for Human Language Sequences

人类多模态语言理解(MLU)结合了语言和非语言行为(例如,视觉和听觉模态),近年来引起了计算机视觉、自然语言处理和语音识别领域的极大关注。随着多模态语言基准测试的不断发展,众多研究展示了在包含不同主题、多样化话题和多种模态的训练数据上的印象深刻的多模态模型。尽管之前的方法在利用表示学习架构和融合策略方面取得了成就,但在应用于新主题的测试样本时,它们不可避免地受到预测偏差的影响。有害的预测偏差主要由主题表达风格和行为的差异引起。

2025-05-16 14:54:44 63

原创 Enhancing Multi-Hop Fact Verifcation with StructuredKnowledge-Augmented Large Language Models

社交媒体平台的快速发展促进了有意制造的虚假信息的传播。这种情况促使了事实核查任务的发展,该任务旨在利用检索到的证据自动评估给定声明的真实性。通常,验证声明需要几条证据,这些证据具有复杂的内在逻辑和相互关系,这高度要求多步推理能力。因此,多跳事实验证已成为一个吸引人的研究课题。与传统的单步推理验证任务不同,多跳验证的主要挑战在于全面理解和推理相关证据片段之间的复杂关系。这需要对上下文有深刻的理解和强大的推理能力以确保准确验证。现有的多跳事实验证研究旨在提高理解和推理能力。

2025-05-15 15:54:14 28

原创 De-biased Attention Supervision for Text Classifcation with Causality

文本分类是自然语言处理(NLP)中的一项基本任务(Kowsari 等,2019)。当给定一个文本时,分类模型的目标是预测相应的标签。由于深度学习的蓬勃发展,文本分类的性能得到了显著提升(Gasparetto 等,2022)。在基于深度学习的文本分类模型中,注意力机制因其显著的有效性而广受欢迎(Du 和 Huang,2018;Sun 和 Lu,2020)。注意力机制旨在模仿人类做出决策的方式,当聚合输入信息时,给予重要信息更高的权重。然而,

2025-05-14 20:46:53 57

原创 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

LoRA(Low-Rank Adaptation of Large Language Models)作为一种创新的微调技术,旨在解决这些问题,为大语言模型的高效应用提供新的思路和方法。传统的微调方法需要更新模型的所有参数,这对于像 GPT-3(175B)这样的大参数模型来说,训练参数规模极其庞大,不仅增加了训练成本,还可能导致过拟合等问题。以 GPT2 medium 在单 GPU 推理为例,在不同条件下延迟增加 2.2% - 30.3%,这在对推理速度要求较高的应用场景中是一个明显的缺陷。

2025-05-13 22:27:51 191

原创 DAMMFND: Domain-Aware Multimodal Multi-view Fake News Detection

虚假新闻的泛滥不仅严重阻碍了互联网社交媒体的健康发展,还在政治、经济和社会层面造成了实际危害,凸显了自动化虚假新闻检测的重要性(Zhou 等,2015;Cui 等,2019;Zhu 等,2022a;Li 等,2024c,b,a)。现有的虚假新闻检测方法通常聚焦于特定领域的新闻,例如健康或政治领域。然而,在现实世界中,社交媒体上的新闻往往跨越多个领域,这就要求现有的虚假新闻检测方法必须考虑多域泛化(Nan 等,2021;Qi 等,2019;Zhu 等,2022b)。

2025-05-13 11:02:52 52

原创 MiniCPM-V

在多模态大语言模型(MLLMs)快速发展的背景下,现有模型因高参数量(如 72B、175B)和算力需求,仅能部署于云端,难以适配手机、车载终端等内存和算力受限的端侧设备。聚焦 “轻量高效” 与 “端侧落地”,通过架构创新、训练优化和部署适配,打造高知识密度的端侧 MLLM,实现性能与效率的平衡,推动多模态 AI 从云端走向终端。

2025-05-12 20:08:19 61

原创 Causal-Inspired Multitask Learning for Video-Based Human Pose Estimation

从视频中估计人体姿态是人工智能的一个基础课题,旨在识别和定位人体上的解剖学关键点。近年来,随着深度学习算法和模型的持续突破,人工智能在多个领域取得了成功。对于姿态估计,有一条研究路线专注于设计不同的网络结构。例如,有研究采用卷积神经网络(CNN)和长短期记忆网络(LSTM)来提取人体的内在运动动态。另一条研究路线引入特定的损失函数来监督网络。1)鲁棒性。过度定制的网络结构和缺乏因果感知能力会影响模型的鲁棒性。2)可解释性。对于姿态估计任务,每一帧都是因果(关键点相关)和非因果(例如背景、物体)因素的混合体。

2025-05-12 16:22:03 831

原创 X - InstructBLIP

例如,对于图像模态的描述任务,可能会生成 “描述这张图片中的场景:[图片数据]” 这样的输入。经过模态编码器的处理,将原始的模态数据转换为特征向量,再通过投影函数将这些特征向量转换到 LLM 的嵌入空间。X - InstructBLIP 模型应运而生,它聚焦于解决现有多模态大语言模型(MM - LLMs)存在的关键问题,旨在构建一个功能强大的通用框架,实现多模态与大语言模型的深度融合,显著提升模型在多模态任务上的表现,特别是在跨模态推理方面取得突破,为多模态人工智能的发展开辟新的道路。

2025-05-11 15:14:56 46

原创 CrAM: Credibility-Aware Attention Modifcation in LLMs forCombating Misinformation in RAG

检索增强生成(Retrieval-Augmented Generation,RAG)(Gao et al. 2024;Zhu et al. 2021)是一种典型的降低大语言模型(Large Language Models,LLMs)(Zhang et al. 2023)幻觉问题的方法,通过从外部语料库中检索和参考相关文件来实现。然而,尽管其效果显著,但大多数 RAG 研究忽视了一个关键问题:外部语料库中的虚假信息污染(Pan et al. 2023b;

2025-05-10 14:48:22 40

原创 Causality-Inspired Invariant Representation Learning for Text-BasedPerson Retrieval

文本型人物检索(TPR)(Li 等 2017)旨在从图像库中检索与给定语言描述在语义上高度相关的特定人物的图像。近年来,TPR 的研究兴趣不断增长(Ding 等 2021;Suo 等 2022;Jiang 和 Ye 2023),因为文本查询可以提供在实际应用(如犯罪调查和失踪人员搜索)中更自然和全面的行人描述。这一任务重要但具有挑战性,因为它需要准确地建模视觉-语言对齐。为了实现这一目标,许多 TPR 模型应运而生(Zhu 等 2021;Suo 等 2022;Chen 等 2022;

2025-05-10 09:14:23 32

原创 Contradicted in Reliable, Replicated in Unreliable:Dual-Source Reference for Fake News Early Detect

虚假新闻是指完全虚假的新闻报道(Rastogi 和 Bansal 2023)。这些报道会影响个人对社会(Wu 等 2023)、健康(Silva 等 2021)等问题的看法。随着虚假新闻的传播,它甚至可能削弱社会稳定和国家安全(Yin 等 2024)。早期检测涉及在新闻传播初期识别其真实性(Liu 和 Wu 2020)。因此,自动化虚假新闻的早期检测具有重要的实际意义。

2025-05-09 15:20:55 35

原创 Qwen2-VL详解

分布式训练是应对大模型训练挑战的有效手段,它将训练任务拆分为多个子任务,并并行分配到多个计算设备上同时进行计算。通过这种方式,可以充分利用多个设备的计算资源,加速模型的训练过程,提升训练速度。总训练速度与单设备计算速度、计算设备总量以及多设备加速比密切相关,其中多设备加速比反映了分布式训练系统中多个设备协同工作的效率提升程度。

2025-05-07 22:03:04 104

原创 From Coarse to Fine: A Distillation Method for Fine-Grained Emotion-CausalSpan Pair Extraction in C

对话中的情感-因果跨度对提取(ECSPE)任务旨在识别对话中表达的情感,并为非中性话语识别情感原因(即情感原因)。如图 1(I) 所示,在对话中,说话者在 H2 中表现出一种情感(标记为happy),其原因在 H1 中被突出显示。ECSPE 任务对许多下游任务至关重要,例如共情生成(Kim 和 Kim 2021)和情感支持(Liu 等 2021b)。现有的工作提出了各种情感识别框架(Shen 等 2021;Ghosal 等 2019;

2025-05-07 16:13:00 138

原创 Collaborative Evolution: Multi-Round Learning Between Large and SmallLanguage Models for Emergent F

社交网络上虚假新闻的传播对社会造成了显著影响(Zhou 和 Zafarani 2020)。为实现虚假新闻的自动检测,研究人员提出了多种基于深度学习的方法(Zhang 等 2024c;Wu 和 Hooi 2023;Hu 等 2021)。传统方法主要依赖小型语言模型(SLMs),如 BERT(Devlin 等 2018),从新闻内容或其传播路径中提取特征进行分类,并在多个数据集上取得了良好表现。

2025-05-06 16:55:12 210

原创 Video-LLaVA

Video-LLaVA 在统一视觉表示框架下,同时提升了图像和视频任务的性能,超越了针对单一模态设计的模型。在视频性能方面,其在 MSRVTT、MSVD、TGIF 和 ActivityNet 数据集上,分别比 Video-ChatGPT 高出 5.8%、9.9%、18.6% 和 10.1%。在图像性能方面,该模型在 5 个图像问答数据集和 4 个图像基准测试中均表现出色,验证了统一表示框架的有效性。采用动态联合训练,每个批次随机组合图像和视频数据,增强模型跨模态泛化能力。其二为统一表示的困难,

2025-04-25 15:21:32 57

原创 基于 Python(selenium) 的今日头条定向爬虫:根据输入的关键词在今日头条上进行搜索,并爬取新闻详情页的内容

该项目能够根据输入的关键词在今日头条上进行搜索,并爬取新闻详情页的内容。

2025-04-25 14:31:30 402

原创 基于 Python(selenium) 的百度新闻定向爬虫:根据输入的关键词在百度新闻上进行搜索,并爬取新闻详情页的内容

该项目能够根据输入的关键词在百度新闻上进行搜索,并爬取新闻详情页的内容。

2025-04-25 11:52:03 868

原创 Causal Representation Learning via Counterfactual Intervention——通过反事实干预的因果表征学习

可分解表示学习(Disentangled Representation Learning,简称DRL)(Bengio, Courville 和 Vincent 2013)旨在从观察到的数据中识别并分离潜在的独立语义因素。尽管 DRL 已取得许多进展(Gilpin et al. 2018;Montero et al. 2020),但这些方法普遍假设潜在的语义因素是相互独立的,而这种假设在现实中往往并不成立。因为感兴趣的潜在语义因素往往是因果相关的,而不是互相独立的(Bengio et al. 2019)。

2025-04-25 11:30:16 55

原创 Eliciting Causal Abilities in Large Language Models for Reasoning Tasks

大型语言模型(Large Language Models, LLMs)面临的一个主要挑战是其推理能力不足(Dziri 等,2024;Cao 等,2024)。当前的LLMs在系统1(System-1)任务上表现良好,但在处理系统2(System-2)问题时存在局限性(Bengio 等,2019)。基于提示(prompting)的方法(Lester, Al-Rfou, 和 Constant 2021;Liu 等,2023)旨在使LLMs理解输入提示并通过设计和构建提示适应下游任务,这几年来成为研究的焦点。

2025-04-23 20:41:17 154

原创 Causal Prompting: Debiasing Large Language Model Prompting Based onFront-Door Adjustment

大型语言模型(LLMs)展示了显著的涌现能力,包括上下文学习(In-Context Learning,ICL)(Brown 等,2020;Peng 等,2024;Yang 等,2024)和链式思维(Chain-of-Thought,CoT)提示(Wei 等,2022;Wang 等,2022),这些方法允许LLMs基于极少数示例,无需权重更新即可执行自然语言任务。这些提示方法在许多传统自然语言处理任务中取得了显著成果,包括情感分析、自然语言推理和机器阅读理解(Kojima 等,2022;

2025-04-21 10:14:05 42

原创 Causal Walk: Debiasing Multi-Hop Fact Verifcation with Front-Door Adjustment

事实验证旨在基于检索到的证据验证给定的陈述,这是一项具有挑战性的任务。之前的工作将事实验证形式化为一种自然语言推理任务,其中多个证据片段被连接在一起,并执行单跳推理(Hanselowski等,2018;Nie, Chen, 和 Bansal,2019)。然而,在许多情况下,验证一个陈述的过程需要整合并推理多个证据片段(Ostrowski等,2021)。因此,多跳事实验证,即执行多跳推理过程来验证陈述,最近成为一个有吸引力的研究课题(Zhou 等,2019;Zhao 等,2020a;

2025-04-20 16:40:22 73

原创 Each Fake News is Fake in its Own Way: An Attribution Multi-GranularityBenchmark for Multimodal Fak

虚假新闻是指作为新闻呈现的虚假或误导性信息(Rubin 等,2016;Molina 等,2021)。社交媒体平台充斥着虚假新闻,对公共健康、治理和社会平衡产生了重大影响(Zannetou 等,2019;Allcott 和 Gentzkow 2017;Apuke 和 Omar 2021)。近年来,这些平台的媒体丰富特性导致公众共享信息的类型发生了渐进式的变化,不仅包含文本内容,还包括大量的视觉元素如图像和视频(Zeng 等,2024)。

2025-04-19 16:01:23 71

原创 Before It’s Too Late: A State Space Model for the Early Predictionof Misinformation and Disinformat

2017年10月28日,一位匿名的4chan用户在该平台上发布了一则简短但影响深远的帖子,声称希拉里·克林顿将在未来几天内被逮捕。2021年1月6日,时任总统唐纳德·特朗普的支持者冲击了美国国会大厦,试图阻止当选总统乔·拜登的选举胜利被确认,这是一场旨在阻止选举结果的国内恐怖袭击。此次袭击导致五人当场及事后死亡,随后数月内又有四人死亡;此外有140多名警察受伤。美联社通过调查超过120名暴徒的在线社交媒体档案,发现他们高度认同四年前开始在4chan上流传的QAnon阴谋论。

2025-04-18 15:52:54 39

人工智能+Vectornet源码详解+博客资源

人工智能+Vectornet源码详解+博客资源,博客地址https://blog.csdn.net/qq_52053775/article/details/128510992

2023-01-01

博客资源:clip-demo测试效果展示

博客资源,博客地址:https://blog.csdn.net/qq_52053775/article/details/127461404.clip--demo测试效果展示

2022-10-22

博客资源+pandas相关代码

博客中pandas相关操作代码,博客地址:https://blog.csdn.net/qq_52053775/article/details/125626554, 给个好评吧!

2022-10-14

博客资源+seaborn相关操作

博客配套资源,博客地址:https://blog.csdn.net/qq_52053775/article/details/125905536 给个好评吧!

2022-10-14

博客资源+Matplotlib绘图的基本使用

Matplotlib绘图的基本使用。建议参考博客:https://blog.csdn.net/qq_52053775/article/details/125866631 给个好评吧!!

2022-10-14

自然语言处理+情感分析+主题分析+词云图

词云图 情感分析 LDA主题分析 机械压缩去词

2022-07-13

数学建模+时间序列预测+LSTM+股票数据分析

数据挖掘 LSTM 时间序列预测 随机森林 基于LSTM的股票数据分析 数学建模 探究股票各指标的相关性、建立模型 建立LSTM时间序列模型

2022-07-13

python+词云图+自然语言处理

机械压缩去词 文本预处理 词云图

2022-07-13

基于LeNet-5的手写体数字识别

基于LeNet-5的手写体数字识别

2022-04-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除