程序员徐师兄,六年大厂程序员,来源:https://gdutxiaoxu.github.io/
题目
实现函数double Power(double base, int
exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。
思路
这道题很容易实现,但需要注意以下陷阱:1)0的负数次方不存在;2)0的0次方没有数学意义;3)要考虑exponent为负数的情况。所以可以对exponent进行分类讨论,在对base是否为0进行讨论。
测试用例
指数和底数都分别设置为正负数和0.
完整Java代码
(含测试代码)
/**
*
* @Description 面试题16:数值的整数次方
*
* @author yongh
* @date 2018年9月17日 下午5:17:35
*/
// 题目:实现函数double Power(double base, int exponent),求base的exponent
// 次方。不得使用库函数,同时不需要考虑大数问题。
public class Power {
boolean IsInvalid = false;//用全局变量标记是否出错
public double power(double base, int exponent) {
IsInvalid = false;
double result; // double类型
if (exponent > 0) {
result = powerCore(base, exponent);
} else if (exponent < 0) {
if (base == 0) {
IsInvalid = true; //0的负数次方不存在
return 0;
}
result = 1 / powerCore(base, -exponent);
} else {
return 1; //这里0的0次方输出为1
}
return result;
}
private double powerCore(double base, int exponent) {
if (exponent == 1)
return base;
if (exponent == 0)
return 1;
double result = powerCore(base, exponent >> 1);
result *= result;
if ((exponent & 0x1) == 1)
result *= base;
return result;
}
// ========测试代码========
void test(String testName, double base, int exponent, double expected, boolean expectedFlag) {
if (testName != null)
System.out.print(testName + ":");
if (power(base, exponent) == expected && IsInvalid == expectedFlag) {
System.out.println("passed.");
} else {
System.out.println("failed.");
}
}
void test1() {
test("test1", 0, 6, 0, false);
}
void test2() {
test("test2", 0, -6, 0, true);
}
void test3() {
test("test3", 0, 0, 1, false);
}
void test4() {
test("test4", 2, 6, 64, false);
}
void test5() {
test("test5", 2, -3, 0.125, false);
}
void test6() {
test("test6", 5, 0, 1, false);
}
void test7() {
test("test7", -2, 6, 64, false);
}
public static void main(String[] args) {
Power demo = new Power();
demo.test1();
demo.test2();
demo.test3();
demo.test4();
demo.test5();
demo.test6();
demo.test7();
}
}
test1:passed.
test2:passed.
test3:passed.
test4:passed.
test5:passed.
test6:passed.
test7:passed.
Power
非递归实现乘方:
上面的powerCore()方法可改写如下:
/**
* 非递归实现乘方
*/
private double powerCore2(double base, int exponent) {
double result=1;
while(exponent!=0) {
if((exponent&0x1)==1)
result*=base;
exponent>>=1;
base*=base; //指数右移一位,则底数翻倍
//举例:10^1101 = 10^0001*10^0100*10^1000
//即10^1+10^4+10^8
}
return result;
}
收获
这道题虽然简单,但很有价值,收获如下:
1.double类型好像是不能直接用等号判断,因为存在误差(这里暂时用==好像没问题,不确定)
2.完全掌握快速做乘方的诀窍:涉及到求解某数的n次方问题时,可以采用递归来完成,即利用以下公式:
3.使用右移运算符 >>代替除以2,有较高的效率: exponent >> 1
4.使用位与运算符代替求余运算符%判断奇偶数,有较高的效率: if ((exponent & 0x1) == 1)
(第三第四条以后在除以2时和判断奇偶时一定要下意识就能想到)
5.不要忽略底数为0而指数为负的情况。
6.非递归实现乘方,其本质是根据指数与2的倍数关系来对底数进行操作。
- **if ((exponent & 0x1) == 1) **里面的小括号一定不能忘记!