Kaggle
文章平均质量分 55
yukai08008
这个作者很懒,什么都没留下…
展开
-
Python - Kaggle实战篇5- Kaggle 竞赛日志001
说明 本篇仅讨论一个竞赛项目的开始和导入 内容 业务理解 简单来说就是用结构化的数据进行预测,然后按照接口的方式提交测试。 import ubiquant env = ubiquant.make_env() # initialize the environment iter_test = env.iter_test() # an iterator which loops over the test set and sample submission for (test_df, sample_原创 2022-01-20 22:19:07 · 1109 阅读 · 0 评论 -
Python - Kaggle实战篇4- Kaggle竞赛调研3
案例1 雨林连接物种音频检测 自动检测热带音景中的鸟类和青蛙物种 声音识别,我记得有个在噪音房间里识别人声音的case,暂时不是目标。 案例2:曼彻斯特城足球俱乐部的Google Research Football 培训代理商以掌握世界上最受欢迎的运动 应该是计算机视觉的内容,暂时不是目标 当前active的竞赛已经看完了,没有适合的目标,我再接着看以前完成的。 案例3: CDP:释放气候解决方案 城商合作,共创可持续未来 没太整明白意思 好像是要根据数据提一套指标方案,不符合目标原创 2020-12-09 18:40:52 · 219 阅读 · 0 评论 -
Python - Kaggle实战篇3- Kaggle竞赛调研2
案例1 在NFL比赛视频中检测头盔撞击 介绍:通过视频来检测头盔的碰撞 视觉检测方面的内容,应该类似目标局域识别(yolo),短期内不想碰 评估 IoU, F1 时间 奖金 数据 结论:边缘检测? 除了yolo这种深度学习之外,应该也可以用几何方法(更快)。不过没时间,不是目标。 案例2:识别人肾组织图像中的肾小球 介绍 评估:除了常见的指标也有其他的 评估:面对不确定性更高的领域,采用了类似专家评审的方法(不是目标) 奖金:计算精度和方法都有奖励原创 2020-12-08 18:38:51 · 330 阅读 · 0 评论 -
Python - Kaggle实战篇2- Kaggle竞赛调研1
说明 接下来的两个月我会尽量调研多一些的竞赛,找一个竞赛的方向。调研的文章每篇都看3个竞赛吧。 案例1 2020年国际机器人学会挑战赛 Kaggle项目源链接 介绍: 技术方向分析: 这应该属于自适应学习的部分。主要的技术应该包含图、推荐算法、评估算法(贝叶斯系列,例如BKT)。 评估方法: 使用ROC进行判别,属于分类监督模型。要通过Kaggle内核进行提交。 时间:项目的正态时间看着像 3+1(个月)的模式。 奖金:还不错,前5名都有奖。(有些团队可能做一个模型然后微调,前五名就都占了)原创 2020-12-07 12:20:53 · 2143 阅读 · 0 评论 -
Python - Kaggle实战篇1- 为什么选择Kaggle
为什么要选Kaggle? 1 首先是因为钱。 Kaggle经常有各种类型的竞赛,赢得比赛本身就会有奖金。没有钱搞科研是很困难的,也没什么动力。参加竞赛算是很理想的方法: 1 技术强-> 拿钱 2 拿了钱 -> 增加技术投资 2 其模式可以称为一种行业标准 举个例子,任何一个竞赛首先会有一些概要描述,本质上是商业应用的概述。 提供了应用相关联的规整数据。 提供了一些思路/教程(相当于参加竞赛的人的一个小社区) 还有排行榜 当然kaggle本身也提供了jupyter notebook给原创 2020-12-07 00:37:05 · 370 阅读 · 0 评论