llaMa模型的创新

LLaMa介绍

LLaMa是基于transformer encoder的生成式模型。

目前有:LLAMA, LLAMA2, LLAMA3 三个大的版本

论文

LLAMA 2: Open Foundation and Fine-Tuned Chat Models: https://arxiv.org/pdf/2307.09288

LLAMA 3: The Llama 3 Herd of Models https://arxiv.org/pdf/2407.21783

模型:

主要创新

  • Pre-Normalization(Pre-Norm,层前归一化)

  • RMSNorm(Root Mean Square Layer Normalization,均方根层归一化):

  • 旋转位置编码(RoPE)

  • 稀疏注意力(Sparse Attention)

  • SwiGLU激活函数:

  • grouped-query attention (GQA)

  • 长上下文:

训练

LLAMA 7B训练18万+小时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值