本题需要用到回溯算法,先梳理一下递归回溯的用法
递归比较经典的例题:
1.求n的阶乘
n! = n * (n-1) * (n-2) * (n-3)······* 2 * 1
#include <iostream>
using namespace std;
int dfs(int n)
{
if (n == 1)//递归的结束条件
{
return 1;
}
return n * dfs(n-1);
}
int main()
{
int n;
cin >> n;
cout << dfs(n) << endl;
system("pause");
return 0;
}
2.走楼梯
假设一个人一步最多可以走三级楼梯,至少走一级,那么如果有n级台阶,有多少种走法
先以四级台阶为例,那么走四级台阶的走法从四开始倒推,最后一步可以走三级两级或者一级,那么每一级是不是都满足这样的关系呢,除了开始的几级楼梯,因此可以推广到n级台阶。到达第n级台阶的走法 = 到达第(n-1)级台阶走法 + 到n-达第(n-2)级台阶走法 + 到达第(n-3)级台阶走法,然后(n-1) (n-2) (n-3)也满足这个关系
#include <iostream>
using namespace std;
int dfs(int n)
{
if (n == 1 || n == 0)
{
return 1;
}
if (n < 0)
{
return 0;
}
return dfs(n-1) + dfs(n-2) + dfs(n-3);
}
int main()
{
int n;
cin >> n;
cout << dfs(n) << endl;
system("pause");
return 0;
}
电话号码字母组合就类似于我们手机上的九宫格输入法,只是要简单很多。首先需要将数字与相应字母分别对应,我采用map来存放,可以通过键值来访问实值。然后再想如何做到将其每种组合逐个输出,假设输入的是23,那么输出应该是2对应的第一位先分别和3对应的每一位进行组合,输出,再进行2的第二位的组合,
#include <iostream>
using namespace std;
#include <string>
#include <map>
map<char, string> tel;
string s;
void letterCombinations(string digits)//用map类型来存储,可以实现数字和字母对应,也可以用数组
{
tel.insert(make_pair('2', "abc"));
tel.insert(make_pair('3', "def"));
tel.insert(make_pair('4', "ghi"));
tel.insert(make_pair('5', "jkl"));
tel.insert(make_pair('6', "mno"));
tel.insert(make_pair('7', "pqrs"));
tel.insert(make_pair('8', "tuv"));
tel.insert(make_pair('9', "wxyz"));
}
string ans;
void dfs(int n)
{
if (n == s.length())//每一次递归的终止条件
{
cout << ans << " ";
return; //返回到上次调用此函数的地方,同时变量值也变回之前的值
}
for (int i = 0; i < tel[s[n]].length();i++)
{
ans.push_back(tel[s[n]][i]); //将字母插入
dfs(n + 1);
ans.pop_back(); //将字母弹出,
}
return;//可以省略
}
int main()
{
cin >> s;
letterCombinations(s);
dfs(0);
system("pause");
return 0;
}