一、算法简介
SUSAN(Smallest Univalue Segment Assimilating Nucleus) 最初是图像处理中的一种角点检测方法,它通过寻找局部区域中与中心像素“相似”的像素集合,计算其对称性,来识别边缘和角点。
在 PCL 中,SUSANKeypoint
被扩展到三维点云,利用法线和几何结构来评估局部对称性,提取几何稳定的关键点。
特点:
-
不依赖强度或纹理,仅依赖几何结构(曲率、法线等)。
-
适用于没有颜色或强度信息的裸点云。
-
效果类似于 Harris3D,但更关注对称性而非曲率峰值。
二、PCL中的实现类
pcl::keypoints::SUSANKeypoint3D<PointInT, PointOutT>
-
输入点必须包含法线信息(如
PointNormal
或PointXYZINormal
)。 -
输出默认使用
PointWithScale
,包含关键点位置与尺度。