第40章:PCL SUSANKeypoint 提取

一、算法简介

SUSAN(Smallest Univalue Segment Assimilating Nucleus) 最初是图像处理中的一种角点检测方法,它通过寻找局部区域中与中心像素“相似”的像素集合,计算其对称性,来识别边缘和角点。

PCL 中,SUSANKeypoint 被扩展到三维点云,利用法线和几何结构来评估局部对称性,提取几何稳定的关键点。

特点:
  • 不依赖强度或纹理,仅依赖几何结构(曲率、法线等)。

  • 适用于没有颜色或强度信息的裸点云。

  • 效果类似于 Harris3D,但更关注对称性而非曲率峰值。


二、PCL中的实现类

pcl::keypoints::SUSANKeypoint3D<PointInT, PointOutT>

  • 输入点必须包含法线信息(如 PointNormalPointXYZINormal)。

  • 输出默认使用 PointWithScale,包含关键点位置与尺度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

《雨声》

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值